Термин экосистема ввел в науку в 1935. Что такое экосистема. Агрессивный Homo sapiens

Степь, лиственный лес, болото, аквариум, океан, поле - любой пункт из этого перечня можно рассматривать как пример экосистемы. В нашей статье мы раскроем суть данного понятия и рассмотрим его составляющие.

Экологические сообщества

Экология - это наука, которая изучает все грани взаимоотношений живых организмов в природе. Поэтому предметом ее изучения является не отдельная особь и условия ее существования. Экология расматривает характер, результат и продуктивность их взаимодействия. Так, совокупность популяций определяет особенности функционирования биоценоза, в состав которого входит целый ряд биологических видов.

Но в естественных условиях популяции взаимодействуют не только между собой, а и с разнообразными условиями окружающей среды. Такое экологическое сообщество называют экосистемой. Для обозначения этого понятия также используют термин биогеоценоз. И миниатюрный аквариум, и необозримая тайга - это пример экосистемы.

Экосистема: определение понятия

Как видите, экосистема является довольно широким понятием. С научной точки зрения это сообщество представляет собой совокупность элементов живой природы и абиотической среды. Рассмотрим такой как степь. Это открытое травянистое пространство с растениями и животными, которые приспособились к условиям холодной малоснежной зимы и жаркого засушливого лета. В ходе адаптации для жизни в степи у них выработался ряд механизмов приспособления.

Так, многочисленные грызуны делают подземные ходы, в которых хранят запасы зерна. У некоторых степных растений есть такое видоизменение побега, как луковица. Оно характерно для тюльпанов, крокусов, подснежников. В течение двух недель, пока весной достаточно влаги, их побеги успевают вырасти и отцвести. А неблагоприятный период они переживают под землей, питаясь за счет ранее запасенных питательных веществ и воды мясистой луковицы.

Злаковые растения имеют другое подземное видоизменение побега - корневище. В его удлиненных междоузлиях также запасаются вещества. Примерами степных злаковых являются костер, мятлик, ежа, овсяница, полевица. Еще одной особенностью являются узкие листья, которые препятствуют избыточному испарению.

Классификация экосистем

Как известно, границу экосистемы устанавливают по фитоценозу - растительному сообществу. Этот признак используют и при классификации данных сообществ. Так, лес - это естественная экосистема, примеры которой весьма разнообразны: дубовый, осиновый, тропический, березовый, пихтовый, липовый, грабовый.

В основе другой классификации находятся зональные или климатические признаки. Такой пример экосистемы - это сообщество шельфа или морских побережий, каменистые или песчаные пустыни, пойменные или субальпийские луга. Совокупность подобных сообществ разного типа составляют глобальную оболочку нашей планеты - биосферу.

Природная экосистема: примеры

Различают также естественные и искусственные биогеоценозы. Сообщества первого типа функционируют без вмешательства человека. Естественная живая экосистема, примеры которой достаточно многочисленны, имеет циклическую структуру. Это значит, что растений вновь возвращается в систему круговорота веществ и энергии. И это несмотря на то, что она обязательно проходит через разнообразные цепи питания.

Агробиоценозы

Используя природные ресурсы, человек создал многочисленные искусственные экосистемы. Примеры таких сообществ - это агробиоценозы. К ним относятся поля, огороды, сады, пастбища, оранжереи, лесные насаждения. Агроценозы создаются для получения сельскохозяйственной продукции. В них существуют те же элементы пищевых цепей, что и естественной экосистеме.

Продуцентами в агроценозах являются как культурные, так и сорные растения. Грызуны, хищники, насекомые, птицы - это консументы, или потребители органического вещества. А бактерии и грибы представляют группу редуцентов. Отличительной особенностью агробиоценозов является обязательное участие человека, который является необходимым звеном трофической цепи и создает условия для продуктивности искусственной экосистемы.

Сравнение естественных и искусственных экосистем

Искусственные которых мы уже рассмотрели, имеют ряд недостатков по сравнению с естественными. Последние отличаются устойчивостью и способностью к саморегуляции. А вот агробиоценозы без участия человека долгое время существовать не могут. Так, или огород с овощными культурами самостоятельно продуцирует не больше года, многолетние травянистые растения - около трех. Рекордсменом в этом плане является сад, плодовые культуры которого способны развиваться самостоятельно до 20 лет.

Естественные экосистемы получают только солнечную энергию. В агробиоценозы человеком вносятся ее дополнительные источники в виде обработки почвы, удобрений, аэрации, борьбы с сорняками и вредителями. Однако известно много случаев, когда хозяйственная деятельность человека приводила и к неблагоприятным последствиям: засолению и заболачиванию почв, опустыниванию территорий, загрязнению природных оболочек.

Экосистемы городов

На современном этапе развития человек уже внес значительные изменения в состав и структуру биосферы. Поэтому выделяют отдельную оболочку, непосредственно созданную деятельностью человека. Она называется ноосфера. В последнее время широкого развития достигает такое понятие как урбанизация - повышение роли городов в жизни человека. В них уже проживает более половины населения нашей планеты.

Экосистема городов имеет свои отличительные особенности. В них нарушено соотношение элементов поскольку регуляцию всех процессов, связанных с превращением веществ и энергии, осуществляет исключительно человек. Создавая для себя все возможные блага, он создает и массу неблагоприятных условий. Загрязненный воздух, транспортная и жилищная проблема, высокий уровень заболеваемости, постоянный шум негативно сказываются на здоровье всех городских жителей.

Что такое сукцессия

Очень часто в пределах одного ареала происходит последовательная смена Это явление называют сукцессией. Классический пример смены экосистемы - это появление лиственного леса на месте хвойного. Вследствие пожара на занимаемой территории сохраняются только семена. Но для их прорастания необходимо длительное время. Поэтому сначала на месте пожара появляется травянистая растительность. Со временем ее сменяют кустарники, а их, в свою очередь, - лиственные деревья. Такие сукцессии называют вторичными. Они возникают под влиянием природных факторов или деятельности человека. В природе они встречаются достаточно часто.

Первичные сукцессии связаны с процессом почвообразования. Она характерна для территорий, лишенных жизни. К примеру, скал, песков, камнях, супесках. При этом сначала возникают условия для формирования почв, а уже потом появляются остальные составляющие биогеоценоза.

Итак, экосистемой называют сообщество, в состав которого входят биотические элементы и Они находятся в тесном взаимодействии, связаны круговоротом веществ и энергии.

Подобно тому, как люди живут в домах и квартирах, так и в природе есть свои отдельные от других системы. Они обособлены и, можно сказать, самостоятельны. Они называются экосистемами и включают множество самых разных организмов. Кроме того, они подчиняются определенным законам. В данной статье мы рассмотрим, что же такое экосистемы: понятие, структура, назначение. А также расскажем, что в них входит.

Понятие

Совокупность организмов, живущих совместно в некой среде обитания и взаимодействующих друг с другом тем или иным образом, обозначается термином "экосистема". Это понятие было предложено в 1935 году английским ученым А. Тенсли. Он занимался исследованиями взаимосвязей организмов и их совместного развития. Кстати, именно он считается одним из основоположников такой науки, как экология, которая имеет дело с изучением того, что такое экосистема. Структура экосистемы представлена двумя основными компонентами: биоценозом и биотопом. Под первым понимаются сами организмы и их взаимосвязи, а под вторым - среда обитания. Как правило, в экосистеме участвует полный набор живых существ: от бактерий до высших животных. И что удивительно, все сообщество находится в равновесии, которое, нарушаясь, восстанавливается вновь, а каждый из ее участников выполняет крайне важные функции.

Биогеоценоз

Совокупность некоторых компонентов, обменивающихся энергией и способных к более или менее - это экосистема. Структура экосистемы предполагает наличие всех основных организмов: бактерий, растений, животных, грибов. Но некоторые из них могут и отсутствовать. В этой ситуации есть смысл отделить это понятие от биогеоценоза. Данный термин подразумевает сообщество, в котором есть все вышеперечисленные компоненты. Более того, биотическая структура экосистемы может включать в себя только одного участника, к примеру, только бактерий. Эта ситуация может наблюдаться в сообществах, сформировавшихся, например, на базе трупов животных. Таким образом, экосистема и биогеоценоз - это не синонимы, ведь последний является более широким понятием. Несмотря на это, их часто путают.

Классификация и структурирование

Помимо того что ученые разделяют по некоторым критериям экосистемы между собой, они также интересуются их внутренним устройством. Различные подходы и точки зрения в сумме дают достаточно полную картину, которая позволяет рассмотреть каждый элемент отдельно. Неудивительно, что в структурировании применяется столько критериев: тип питания и функции, видовая принадлежность, местонахождение участников. Разумеется, стоит рассмотреть самые важные из факторов подробнее, ведь экологическая структура экосистемы без разговора, например, о ее составе, имеет мало смысла.

Что же касается разделения сообществ между собой, как правило, главным критерием выступает преобладающая среда. Еще одной важной чертой является естественность ее происхождения и способность к автономному поддержанию функционирования. Здесь уже речь идет в первую очередь о вмешательстве в природу человеческого фактора, который тоже есть смысл обозначить более подробно, но позднее.

По функциям

Трофическая структура экосистемы разграничивает участвующие в ней организмы по типу питания. Согласно круговороту веществ в природе, ничто не берется из пустоты и не может просто так исчезнуть. Очевидно, дело лишь в том, как преображаются те или иные материи. И здесь в дело вступают две противоположные группы организмов: автотрофы и гетеротрофы. Последние - это животные и грибы, которые потребляют органику. Первые же (растения и бактерии) поступают в точности наоборот. Кстати, они в свою очередь делятся на фотосинтетиков и хемосинтетиков.

Функциональная структура экосистемы предполагает такое же деление, но под другими наименованиями. Здесь речь идет о продуцентах, редуцентах, консументах и деструкторах. Два этих подхода тесно связаны с понятием пищевых цепочек.

По иерархии

Естественно, любая система подобной сложности делится на несколько уровней. Первым и самым всеобъемлющим является уже упомянутый биоценоз, являющийся совокупностью всех участвующих живых организмов. Далее экосистем предполагает деление на фито-, зоо-, мико- и микробоценоз. Каждая из этих отдельных групп содержит совокупность, называемую популяцией. Наконец, самой мелкой единицей служит особь (или индивидуум), представляющая собой отдельный экземпляр.

Есть и функциональная иерархия. Трофическая структура экосистемы, как уже было упомянуто, предполагает разделение на продуцентов, консументов, редуцентов и деструкторов. Но и здесь есть несколько уровней. Так, все начинается с зеленых растений, которые получают минеральные вещества и воду из почвы, а также солнечный свет. Травоядные уже относятся к консументам первого уровня и потребляют зелень в пищу. В свою очередь, они служат кормом для хищников, стоящих на ступень выше. Так что и здесь видна своя особая иерархия.

По видам

Даже в пределах одного типа организмов может наблюдаться некое разнообразие, и это не вызывает удивления. Видовая структура экосистемы - ее важный показатель, отражающий соотношение тех или иных растений, животных, грибов, микроорганизмов и т. д. Эта характеристика зависит от большого числа факторов: географическое положение, климатический пояс, водный режим, возраст сообщества. Похожие видовые составы могут наблюдаться в тысячах километров друг от друга, если основные показатели в них схожи. Помимо самого наличия тех или иных организмов, важна и их численность. Наиболее распространенные в той или иной экосистеме представители живой природы называются средообразователями и, соответственно, выполняют ключевые функции и создают условия для выживания других видов.

Тем не менее, это не значит, что малочисленные участники не слишком важны. Наоборот, в ряде случаев особая биотическая структура экосистем может дать очень точную информацию о ее состоянии. Наличие редких экземпляров растений и животных может позволить понять, например, насколько чисты вода и воздух.

По пространственному признаку

На первый взгляд деление экосистем, связанное с их местонахождением, довольно очевидно. Степь, лес, пустыня, тундра, - набор живущих здесь организмов, без сомнений, будет совершенно разным. Но такая классификация уместна, только если речь идет о сравнении нескольких систем и различиях между ними.

С другой стороны, каждое отдельное сообщество будет обладать своей физической иерархией. Пространственная структура экосистемы в лесу, к примеру, легко заметна, она делится на несколько уровней. Соловьи вьют гнезда на более высоких деревьях, а трясогузки предпочитают держаться ближе к земле. Да и среди растительности неравенство очевидно: деревья, кустарники, трава и мох располагаются на совершенно разных уровнях. Ученые совокупность этих характеристик называют ярусностью, или этажностью.

Наземная экосистема

Структура экосистемы, располагающейся на суше, может быть очень разной, но практически всегда крайне интересна. Они находятся повсюду: в лесах, степях, пустынях, высоко в горах, и каждая из них по-своему любопытна. Всех их объединяет наземно-воздушная среда обитания. Между тем различий в них может быть даже больше, чем общего. Например, структура лесной экосистемы в тропиках будет совершенно непохожа на то, что наблюдается в средней полосе России. Более того, зеленый массив в Южной Америке будет разительно отличаться от картины в Юго-Западной Азии. Как уже было упомянуто, климатический пояс - это один из основных, но не единственный фактор, влияющий на то, как складывается экосистема. Структура экосистемы слишком сложна и многомерна, а потому восхитительна и загадочна.

Водная

Пресноводные и морские организмы, водоросли, планктон, медузы, глубоководные рыбы - видовая структура экосистемы, располагающейся в мировом океане, не менее занимательна, чем земная. Зачастую она может быть даже намного сложней. Структура водной экосистемы в некоторых чертах может напоминать наземную, например, здесь тоже присутствует ярусность. Но есть и очень важное отличие. Оно состоит в том, что пирамида биомассы здесь перевернута. Это означает, что первичные продуценты (здесь это разнообразный планктон) гораздо более многочисленны и размножаются быстрее, чем потребители, или консументы. В первую очередь это касается морских и океанских глубин, но и в пресноводных сообществах может наблюдаться такая же ситуация. Самое занимательное, что структура водной экосистемы включает в себя как одни из самых мелких организмов, так и самых крупных. И все они мирно живут в соседстве друг с другом.

Значение

Важность экосистем сложно переоценить. Во-первых, все они взаимосвязаны круговоротом веществ в природе. Элементы из одних систем попадают в другие, так что они еще и взаимозависимы. Во-вторых, они позволяют более или менее сохранять биоразнообразие - каждое сообщество организмов по-своему уникально, удивительно и прекрасно. Наконец, все те природные ресурсы, которые человек получает, не задумываясь, - чистая вода, сельскохозяйственные угодья, плодородная почва, свежий воздух - дает ему та или иная экосистема. Структура экосистемы, как и всей биосферы, довольно хрупка, поэтому не нужно забывать о ее роли и иногда следует задумываться о том, что планета стоит того, чтобы сберечь ее богатства для потомков.

Антропогенный фактор

Человек своей деятельностью так или иначе затрагивает практически все экосистемы. Но если влияние на некоторые из них опосредовано, то другие испытывают его напрямую. Вырубка лесов, почвы и воды, отлов рыбы и животных - все это становится серьезным испытанием для сохранения природного равновесия.

Кстати, люди продолжают учиться моделировать стабильно функционирующие экосистемы самостоятельно, а также пытаются управлять существующими. Как правило, жизненный цикл искусственно созданных сообществ не слишком велик, а стабильность вызывает массу вопросов. Тем не менее, было бы очень полезно научиться управлять экосистемами, ведь таким образом можно было бы добиться большей продуктивности сельского хозяйства, а также попытаться восстановить разрушенное. К сожалению, пока оценивается крайне негативно, ведь его действия вызывают массу последствий, в частности:

  • изменение климата вследствие сдвига в газовом составе атмосферы;
  • сокращение площадей лесов;
  • изменение и уничтожение уникальных сообществ и условий;
  • истощение природных ресурсов;
  • опустынивание и ;
  • накопление бытового мусора и загрязнение сред;
  • изменение структуры экосистем;
  • истончение озонового слоя.

Стоит задуматься над потребительским отношением человечества к планете и поразмыслить, можно ли сохранить природу в ее великолепном разнообразии. Ведь уничтожить не так уж сложно, но получится ли создать?

Изучение окружающей среды как равновесного сообщества живых организмов, идеально приспособленного к обитанию в конкретной среде с определенным микроклиматом и рядом других особенностей, привело к появлению понятия экосистемы.

Этим словом стали называть систему, включающую взаимодействие живых существ (биоценоза) и среды обитания (биотопа), их взаимные обмены энергией и веществом, продолжающиеся в течение достаточно долгого промежутка времени. Ярким примером экосистемы служит пруд, в котором обитают многочисленные растения, микроорганизмы, насекомые, рыбы, птицы и млекопитающие.

В биологии принято различать следующие градации экосистем:

— микроэкосистемы (капля воды, в которой обитают микроорганизмы, поваленный ствол дерева с обитающими в нем бактериями и насекомыми);

— мезоэкосистемы (отдельно взятый пруд или лесной массив на определенной территории);


— макроэкосистемы (континентальная, океаническая);

— глобальная экосистема, включающая нашей планеты.

Глобальная экосистема – это совокупность макроэкосистем, а те, в свою очередь, являются совокупностью мезоэкосистем разных масштабов, или биогеоценозов. Каждый отдельный биогеоценоз – это основной элемент глобальной экосистемы Земли.

Компоненты экосистемы

В состав любой экосистемы входят как живые, так и неживые компоненты, активно влияющие друг на друга. Основным признаком ее существования является устойчивость круговорота веществ и явлений в течение достаточно долгого периода, который нередко измеряется даже не тысячелетиями, а миллионами лет.

Компонентами биогеоценоза (экосистемы) в обязательном порядке являются:

— атмосфера (климатоп), ее климатические особенности и погодные явления;

— грунт или почва (эдафотоп) для обеспечения минералами, влагой, органическими элементами;

— растительный мир (фитоценоз), осуществляющий переработку влаги и минералов в органические соединения;


— животный мир (зооценоз), питательной базой для которых служат растения и животные;

— микроорганизмы (микробиоценоз), отвечающие за переработку органических остатков отмерших растений и животных.

Для обозначения системы этих компонентов в западной биологической науке используется термин «экосистема» , предложенный в 1935 году английским ученым А.Тенсли. Российская научная школа предпочитает пользоваться термином «биогеоценоз» авторства советского биолога В.Н.Сукачева. Оба названия равноценны по смыслу.

Характеристики экосистемы

Учитывая разнообразие живых и неживых компонентов, составляющих любую экосистему, характеристики, которыми описываются ее свойства, носят общий характер.

Устойчивость – основной показатель экосистемы. Под устойчивостью подразумевается способность поддерживать свою структуру при различных внешних воздействиях либо изменениях параметров среды и восстанавливаться при уничтожении части .

Биоразнообразие – количественное и качественное разнообразие видов живых существ, включенных в экосистему. Чем выше биоразнообразие, тем более устойчивой является структура экосистемы.

Сложность экосистемы – показатель, включающий как общее число видов, так и количество взаимодействий между ними. Чем большим числом связей характеризуется биогеоценоз, тем он более устойчив и быстрее восстанавливается при каких-либо негативных воздействиях.

Продуктивность – показатель, выражаемый как в виде общей массы обитающих на единице площади всех живых существ, так и в виде этой же массы в пересчете на энергию либо на количество сухой органики.


Кроме того, в последнее столетие появился новый фактор, оказывающий влияние на экосистемы всех материков — антропогенный . Экологи всего мира внимательно следят, чтобы антропогенное воздействие не превышало разумных пределов и не приводило к полному уничтожению экосистем в отдельных местностях.

План.

1. Введение. Экосистема и экосистемный метод в экологии.

2. Общая структура экосистем.

3. Биотический компонент экосистем.

3.1. Солнце как источник энергии.

4. Пищевые цепи и трофические уровни.

4.1. Первичные продуценты.

4.2. Первичные консументы.

4.3. Консументы второго и третьего порядка.

4.4. Редуценты и детритофаги.

5. Пищевые сети.

6. Экологические пирамиды.

6.1. Пирамиды численности.

6.2. Пирамиды биомассы.

7. Абиотический компонент экосистемы.

7.1. Эдафические факторы.

7.2. Климатические факторы.

7.2.1. Свет.

7.2.2. Температура.

7.2.3. Влажность и соленость.

9. Список используемой литературы.

1. Введение. Экосистема и экосистемный метод в экологии.

Впервые определение экосистемы как совокупности живых организмов с их местообитанием было дано Тэнсли в 1935 году. При экосистемном подходе к изучению экологии в центре внимания ученых оказываются поток энергии и круговорот веществ между биотическим и абиотическим компонентом экосферы. Экосистемный подход выдвигает на первый план общность организации всех сообществ, независимо от местообитания и систематического положения входящих в них организмов. Вместе с тем в экосистемном подходе находит приложение концепция гомеостаза (саморегуляции), из которой становится понятным, что нарушение регуляторных механизмов, например в результате загрязнения среды, может привести к биологическому дисбалансу. Экосистемный подход важен также при разработке в будущем научно обоснованной практики ведения сельского хозяйства.

2. Общая структура экосистем.

Экосистемы состоят из живого и неживого компонентов, называемых соответственно биотическим и абиотическим. Совокупность живых организмов биотического компонента называется сообществом. Исследование экосистем включает, в частности, выяснение и описание тесных взаимосвязей, существующих между сообществом и абиотическим компонентом.

Биотический компонент полезно подразделить на автотрофные и гетеротрофные организмы. Таким образом, все живые организмы попадут в одну из двух групп. Автотрофы синтезируют необходимые им органические вещества из простых неорганических и делают, за исключением хемотрофных бактерий, с помощью фотосинтеза, используя свет как источник энергии. Гетеротрофы нуждаются в источнике органического вещества и (за исключением некоторых бактерий) используют химическую энергию, содержащуюся в потребляемой пище. Гетеротрофы в своем существовании зависят от автотрофов, и понимание этой зависимости необходимо для понимания экосистем.

Неживой, или абиотический, компонент экосистемы в основном включает 1) почву или воду и 2) климат. Почва и вода содержат смесь неорганических и органических веществ. Свойства почвы зависят от материнской породы, на которой она лежит, и из которой частично образуется. В понятие климата входят такие параметры, как освещенность температура и влажность, в большой степени определяющий видовой состав организмов, успешно развивающихся в данной экосистеме. Для водных экосистем очень существенна также степень солености.

3. Биотический компонент экосистем

Организмы в экосистеме связаны общностью энергии и питательных веществ . Всю экосистему можно уподобить единому механизму, потребляющему энергию и питательные вещества для совершения работы. Питательные вещества первоначально происходят из абиотического компонента системы, в который, в конце концов, и возвращаются либо в качестве отходов жизнедеятельности, либо после гибели и разрушения организмов. Таким образом, в экосистеме происходит круговорот питательных веществ, в котором участвуют и живой и неживой компоненты. Такие круговороты называются биогеохимическими циклами.

Движущей силой этих круговоротов служит, в конечном счете, энергия Солнца. Фотосинтезирующие организмы непосредственно используют энергию солнечного света и затем передают ее другим представителям биотического компонента. В итоге создается поток энергии и питательных веществ через экосистему. Необходимо еще отметить, что климатические факторы абиотического, компонента, такие, как температура, движение атмосферы, испарение и осадки, тоже регулируются поступлением солнечной энергии.

Энергия может существовать в виде различных взаимопревращаемых форм, таких, как механическая, химическая, тепловая и электрическая энергия. Переход одной формы в другую называется преобразованием энергии.

Таким образом, все живые организмы – это преобразователи энергии, и каждый раз, когда происходит превращение энергии, часть ее теряется в виде тепла. В конце концов, вся энергия, поступающая в биотический компонент экосистемы, рассеивается в виде тепла. Изучение потока энергии через экосистемы называется энергетикой экосистемы.

Фактически живые организмы не используют тепло, как источник энергии для совершения работы – они используют свет и химическую энергию.

Изучение потока энергии через экосистемы называется энергетикой экосистем.

3.1. Солнце как источник энергии

Первоисточником энергии для экосистем служит Солнце. Солнце – это звезда, излучающая в космос огромное количество энергии. Энергия распространяется в космическом пространстве в виде электромагнитных волн, и небольшая часть ее, примерно 10,5 * 10 6 кДж/м 2 в год, захватывается Землей. Около 40 % этого количества сразу отражается от облаков, атмосферной пыли и поверхности Земли без какого бы то ни было теплового эффекта. Еще 15 % поглощаются атмосферой (в частности, озоновым слоем в ее верхних частях) и превращаются в тепловую энергию или расходуются на испарение воды. Оставшиеся 45 % поглощаются растениями и земной поверхностью. В среднем это составляет 5 * 10 6 кДж/м 2 в год, хотя реальное количество энергии для данной местности зависит от географической широты. Большая часть энергии повторно излучается земной поверхностью и нагревает атмосферу приблизительно две трети энергии поступает в атмосферу этим путем. И только небольшая часть пришедшей от Солнца энергии усваивается биотическим компонентом экосистемы.

4. Пищевые цепи и трофические уровни

Внутри экосистемы содержащие энергию органические вещества создаются автотрофными организмами и служат пищей (источником вещества и энергии) для гетеротрофов. Типичный пример животное поедает растения. Это животное в свою очередь может быть съедено другим животным, и таким путем может происходить перенос энергии через ряд организмов – каждый последующий питается предыдущим, поставляющим, поставляющим ему сырье и энергию. Такая последовательность называется пищевой цепью, а каждое ее звено – трофическим уровнем. Первый трофический уровень занимают автотрофы, или так называемые первичные продуценты. Организмы второго трофического уровня называются первичными консументами, третьего – вторичными консументами и т. д. Обычно бывает четыре или пять трофических уровней и редко больше шести.

4.1. Первичные продуценты

Первичными продуцентами являются автотрофные организмы, в основном зеленые растения. Некоторые прокариоты, а именно сине-зеленые водоросли и немногочисленные виды бактерий, тоже фотосинтезируют, но их вклад относительно невелик. Фотосинтетики превращают солнечную энергию (энергию света) в химическую энергию, заключенную в органических молекулах, из которых построены ткани. Небольшой вклад в продукцию органического вещества вносят и хемосинтезирующие бактерии, извлекающие энергию из неорганических соединений.

В водных экосистемах главными продуцентами являются водоросли – часто мелкие одноклеточные организмы, составляющие фитопланктон поверхностных слоев океанов и озер. На суше большую часть первичной продукции поставляют более высокоорганизованные формы, относящиеся к голосеменным и покрытосеменным. Они формируют леса и луга.

4.2. Первичные консументы

Первичные консументы питаются первичными продуцентами, т. е. это травоядные животные. На суше типичными травоядными являются многие насекомые, рептилии, птицы и млекопитающие. Наиболее важные группы травоядных млекопитающих – это грызуны и копытные. К последним относятся пастбищные животные, такие, как лошади, овцы, крупный рогатый скот, приспособленные к бегу на кончиках пальцев.

В водных экосистемах (пресноводных и морских) травоядные формы представлены обычно моллюсками и мелкими ракообразными. Большинство этих организмов – ветвистоусые и веслоногие раки, личинки крабов, усоногие раки и двустворчатые моллюски (например, мидии и устрицы) – питаются, отфильтровывая мельчайших первичных продуцентов из воды. Вместе с простейшими многие из них составляют основную часть зоопланктона, питающегося фитопланктоном. Жизнь в океанах и озерах практически полностью зависит от планктона, так как с него начинаются почти все пищевые цепи.

4.3. Консументы второго и третьего порядка

Растительный материал ( например, нектар) → муха → паук →

→ землеройка → сова

Сок розового куста → тля → божья коровка → паук → насекомоядная птица → хищная птица

Доктор экономических наук Ю. ШИШКОВ

Мы видим бездонное голубое небо, зеленые леса и луга, слышим пение птиц, дышим воздухом, состоящим почти целиком из азота и кислорода, плаваем по рекам и морям, пьем воду или пользуемся ею, загораем в ласковых солнечных лучах - и все это воспринимаем как естественное и обыденное. Кажется, иначе и быть не может: так было всегда, так будет вечно! Но это глубокое заблуждение, порожденное повседневной привычкой и незнанием того, как и почему планета Земля стала такой, какой мы ее знаем. Планеты, устроенные иначе, чем наша, не только могут быть, но и реально существуют во Вселенной. Но есть ли где-нибудь в глубинах космоса планеты с экологическими условиями, более или менее близкими к земным? Такая возможность весьма гипотетич на и минимальна. Земля если не уникальное, то, во всяком случае, "штучное" произведение природы.

Основные экосистемы планеты. Горы, леса, пустыни, моря, океаны - пока еще относительно чистая природа - и мегаполисы - средоточие жизни и деятельности людей, способных превратить Землю в сплошную свалку.

Такой красивой видится из космоса Земля - уникальная планета, породившая жизнь.

Наука и жизнь // Иллюстрации

На рисунке представлены этапы эволюции планеты Земля и развития на ней жизни.

Вот только некоторые из негативных последствий, вызванных деятельностью человечества на Земле. Воды морей и океанов загрязняются нефтью, хотя существует не один способ ее сбора. Но воды засоряются и банальными бытовыми отходами.

Нет обитаемого континента, где не дымили бы фабрики и заводы, не к лучшему изменяя окружающую атмосферу.

Наука и жизнь // Иллюстрации

Картина, типичная для любого крупного города Земли: бесконечные вереницы машин, от выхлопных газов которых болеют люди, гибнут деревья...

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Экологически чистые производства - единственное, что даст возможность если и не сделать планету более чистой, то хотя бы оставить ее такой, какой мы ее получили.

Долгое становление экосистемы Земли

Прежде всего напомним о том, как шла эволюция Солнечной системы. Примерно 4,6 миллиарда лет назад одно из множества вихревых газопылевых облаков в пределах нашей Галактики стало уплотняться и превращаться в Солнечную систему. Внутри облака сформировался основной шарообразный, тогда еще холодный вращающийся сгусток, состоящий из газа (водорода и гелия) и космической пыли (осколков атомов более тяжелых химических элементов от ранее взорвавшихся гигантских звезд), - будущее Солнце. Вокруг него под влиянием нараставшей гравитации стали обращаться более мелкие сгустки того же облака - будущие планеты, астероиды, кометы. Орбиты одних из них оказались ближе к Солнцу, других - дальше, одни строились из крупных сгустков межзвездной материи, другие - из меньших.

Поначалу это не имело особого значения. Но со временем силы гравитации все более уплотняли Солнце и планеты. А степень уплотнения зависит от их исходной массы. И чем сильнее сжимались эти сгустки материи, тем больше они разогревались изнутри. При этом тяжелые химические элементы (прежде всего - железо, силикаты) плавились и опускались к центру, а легкие (водород, гелий, углерод, азот, кислород) оставались на поверхности. Соединяясь с водородом, углерод превращался в метан, азот - в аммиак, кислород - в воду. На поверхности планет тогда царил космический холод, поэтому все соединения находились в виде льда. Над твердой частью располагался газообразный слой водорода и гелия.

Однако массы даже таких крупных планет, как Юпитер и Сатурн, оказалось недостаточно для того, чтобы давление и температура в их центрах достигли той точки, когда начинается термоядерная реакция, а внутри Солнца такая реакция началась. Оно раскалилось и около четырех миллиардов лет назад превратилось в звезду, посылающую в пространство не только волновое излучение - свет, тепло, рентгеновские и гамма-лучи, но и так называемый солнечный ветер - потоки заряженных частиц материи (протонов и электронов).

Для формирующихся планет начались испытания. На них обрушились потоки тепловой энергии Солнца и солнечный ветер. Холодная поверхность протопланет разогрелась, облака водорода и гелия поднялись над ними, а ледяные массивы воды, метана и аммиака растаяли и стали испаряться. Гонимые солнечным ветром, эти газы уносились в космос. Степень такого "раздевания" первичных планет определяло расстояние их орбит от Солнца: ближние к нему испарялись и обдувались солнечным ветром наиболее интенсивно. По мере того как планеты "худели", их гравитационные поля ослабевали, а испарение и выдувание усиливались, пока самые близкие к Солнцу планеты полностью не развеялись в космосе.

Меркурий - ближайшая к Солнцу из сохранившихся планет - сравнительно небольшое, очень плотное небесное тело с металлическим ядром, но едва заметным магнитным полем. Он практически лишен атмосферы, а его поверхность покрыта спекшимися каменистыми породами, которые в дневное время раскаляются Солнцем до 420-430 о С, а потому жидкой воды здесь быть не может. Более удаленная от Солнца Венера по размерам и плотности очень похожа на нашу планету. У нее почти такое же большое железное ядро, но из-за медленного вращения вокруг своей оси (в 243 раза медленнее Земли) она лишена магнитного поля, которое могло бы защитить ее от солнечного ветра, губительного для всего живого. Венера, правда, сохранила довольно мощную атмосферу, на 97% состоящую из углекислого газа (СО 2) и менее чем на 2% из азота. Такой газовый состав создает мощный парниковый эффект: СО 2 мешает солнечному излучению, отраженному венерианской поверхностью, уходить в космос, из-за чего поверхность планеты и нижние слои ее атмосферы раскалены до 470°С. В таком пекле о жидкой воде, а следовательно, о живых организмах не может быть и речи.

Другой наш сосед, Марс, почти вдвое меньше Земли. И хотя он имеет металлическое ядро и вращается вокруг своей оси почти с той же скоростью, что и Земля, у него нет магнитного поля. Почему? Его металлическое ядро весьма невелико, а главное - оно не расплавлено и потому не индуцирует такое поле. В результате поверхность Марса постоянно бомбардиру ют заряженные осколки ядер водорода и других элементов, которые непрерывно выбрасывает Солнце. Атмосфера Марса похожа по составу на венерианскую: 95% СО 2 и 3% азота. Но из-за слабой гравитации этой планеты и солнечного ветра ее атмосфера крайне разрежена: давление на поверхности Марса в 167 раз ниже, чем на Земле. При таком давлении там тоже не может быть жидкой воды. Впрочем, ее на Марсе нет и из-за низкой температуры (днем в среднем минус 33 о С). Летом на экваторе она повышается максимум до плюс 17°С, а зимой в высоких широтах опускается до минус 125°С, когда в лед превращается и атмосферный углекислый газ - этим и объясняются сезонные увеличения белых полярных шапок Марса.

Большие планеты, Юпитер и Сатурн, вообще не имеют твердой поверхности - верхние их слои состоят из жидкого водорода и гелия, а нижние - из расплавленных тяжелых элементов. Уран представляет собой жидкий шар с ядром из расплавленных силикатов, над ядром лежит горячий водяной океан глубиной около 8 тысяч километров, а над всем этим - водородно-гелиевая атмосфера толщиной в 11 тысяч километров. Столь же непригодны для зарождения биологической жизни и самые дальние планеты - Нептун и Плутон.

Повезло лишь Земле. Случайное стечение обстоятельств (главные среди них - исходная масса на стадии протопланеты, расстояние от Солнца, скорость вращения вокруг своей оси и наличие полужидкого железного ядра, дающего ей сильное магнитное поле, защищающее от солнечного ветра) позволило планете со временем стать такой, какой мы привыкли ее видеть. Долгая геологическая эволюция Земли привела к появлению жизни только на ней.

Прежде всего, изменился газовый состав земной атмосферы. Первоначально она, по-видимому, состояла из водорода, аммиака, метана и водяного пара. Потом, взаимодействуя с водородом, метан превратился в СО 2 , а аммиак - в азот. Кислорода в первичной атмосфере Земли не было. По мере того как она охлаждалась, водяной пар конденсировался в жидкую воду и образовывал океаны и моря, покрывшие три четверти земной поверхности. В атмосфере уменьшилось количество двуокиси углерода: она растворялась в воде. Во время беспрерывных извержений вулканов, характерных для ранних этапов истории Земли, часть СО 2 связывалась в карбонатных соединениях. Уменьшение в атмосфере двуокиси углерода ослабило создаваемый им парниковый эффект: температура на поверхности Земли снизилась и стала кардинально отличаться от той, какая существовала и существует на Меркурии и Венере.

Моря и океаны сыграли решающую роль в биологической эволюции Земли. Атомы разнообразных химических элементов, растворенных в воде, взаимодействуя, образовывали новые, более сложные неорганические соединения. Из них под действием электрических разрядов молний, радиоактивного излучения металлов, извержений подводных вулканов в морской воде возникали простейшие органические соединения - аминокислоты, те исходные "кирпичики", из которых складываются белки - основа живых организмов. Большинство таких простейших аминокислот распадалось, но какая-то их часть, усложняясь, становилась первичными одноклеточными организмами типа бактерий, способных приспосабливаться к среде обитания и размножаться.

Так около 3,5 миллиарда лет назад в геологической истории Земли наступил качественно новый этап. Химическую ее эволюцию дополнила (а вернее - отодвинула на второй план) эволюция биологическая. Такого не знала никакая другая планета Солнечной системы.

Прошло еще примерно полтора миллиарда лет, прежде чем в клетках некоторых бактерий появились хлорофилл и другие пигменты, способные под действием солнечного света осуществлять фотосинтез - превращать молекулы двуокиси углерода (СО 2) и воды (Н 2 О) в органические соединения и свободный кислород (О 2). Теперь световое излучение Солнца стало служить бесконечному наращиванию биомассы, развитие органической жизни пошло значительно быстрее.

И еще. Под действием фотосинтеза, поглощающего двуокись углерода и высвобождающего несвязанный кислород, менялся газовый состав земной атмосферы: доля СО 2 сокращалась, а доля О 2 нарастала. Леса, покрывшие сушу, ускорили этот процесс. И около 500 миллионов лет назад появились простейшие водоплавающие позвоночные животные. Еще примерно через 100 миллионов лет количество кислорода достигло такого уровня, который позволил некоторым позвоночным выйти на сушу. Не только потому, что все сухопутные животные дышат кислородом, но и благодаря тому, что в верхних слоях атмосферы на высоте 25-30 километров появился защитный слой озона (О 3), поглощающий значительную часть ультрафиолетового и рентгеновского излучений Солнца, губительных для сухопутных животных.

Состав земной атмосферы приобрел к этому времени исключительно благоприятные свойства для дальнейшего развития жизни: 78% азота, 21% кислорода, 0,9% аргона и совсем немного (0,03%) углекислого газа, водорода и других газов. При такой атмосфере Земля, получая достаточно много тепловой энергии Солнца, около 40% ее, в отличие от Венеры, отражает в космос, и земная поверхность не перегревается. Но и это еще не все. Тепловая солнечная энергия, почти беспрепятственно поступающая на Землю в виде коротковолнового излучения, отражается в космос уже как длинноволновое инфракрасное излучение. Оно частично задерживается содержащимися в атмосфере водяным паром, углекислым газом, метаном, окисью азота и другими газами, создающими природный парниковый эффект. Благодаря ему в нижних слоях атмосферы и на поверхности Земли поддерживается более или менее устойчивая умеренная температура, которая примерно на 33 о С выше, чем она могла быть, если бы не существовало природного парникового эффекта.

Так шаг за шагом на Земле складывалась уникальная экологическая система, пригодная для жизни. Крупное, наполовину расплавленное железное ядро и быстрое вращение Земли вокруг своей оси создают достаточно сильное магнитное поле, которое заставляет потоки солнечных протонов и электронов обтекать нашу планету, не причиняя ей существенного вреда даже в периоды повышенной радиации Солнца (будь это ядро поменьше и потверже, а вращение Земли - помедленнее, она осталась бы беззащитной перед солнечным ветром). А благодаря своему магнитному полю и значительной собственной массе Земля сохранила достаточно мощный слой атмосферы (толщиной около 1000 км), создающий комфортный тепловой режим на поверхности планеты и обилие жидкой воды - непременное условие зарождения и эволюции жизни.

На протяжении двух миллиардов лет число различных видов растений и животных на планете достигло примерно 10 миллионов. Из них 21% приходится на растения, почти 76% - на беспозвоночные животные и чуть больше 3% - на позвоночные, из которых лишь десятая часть - млекопитающие. В каждой природно-климатической зоне они взаимодополняют друг друга в качестве звеньев трофической, то есть пищевой, цепи, образуя относительно устойчивый биоценоз.

Возникшая на Земле биосфера постепенно вписалась в экосистему и стала неотъемлемым ее компонентом, участвующим в геологическом круговороте энергии и вещества.

Живые организмы - активные составляющие многих биогеохимических циклов, в которых участвуют вода, углерод, кислород, азот, водород, сера, железо, калий, кальций и другие химические элементы. Из неорганической фазы они переходят в органическую, а затем в виде отходов жизнедеятельности растений и животных или же их останков вновь возвращаются в неорганическую фазу. Подсчитано, например, что через органическую фазу ежегодно проходит седьмая часть всего углекислого газа и 1/4500 часть кислорода. Если бы процесс фотосинтеза на Земле по каким-то причинам прекратился, то свободный кислород исчез бы из атмосферы в течение приблизительно двух тысяч лет. А заодно исчезли бы все зеленые растения и все животные, за исключением простейших анаэробных организмов (некоторых видов бактерий, дрожжей и червей).

Экосистема Земли самоподдерживается и благодаря другим кругооборотам веществ, не связанным с функционированием биосферы, - напомним известный со школьной скамьи круговорот воды в природе. Вся совокупность тесно взаимосвязанных биологических и небиологических циклов образует сложную саморегулирующуюся экологическую систему, находящуюся в относительном равновесии. Однако ее устойчивость весьма хрупка и уязвима. Доказательство тому - неоднократные планетарные катастрофы, причиной которых становились или падение на Землю крупных космических тел, или мощные извержения вулканов, из-за чего поступление солнечного света к земной поверхности надолго уменьшалось. Всякий раз такие катастрофы уносили от 50 до 96% земной биоты. Но жизнь возрождалась вновь и продолжала развиваться.

Агрессивный Homo sapiens

Появление фотосинтезирующих растений, как уже говорилось, ознаменовало новый этап в развитии Земли. Столь кардинальный геологический сдвиг был порожден сравнительно простыми живыми организмами, не обладающими разумом. От человека же - организма высокоорганизованного, наделенного мощным интеллектом - закономерно ожидать гораздо более ощутимого воздействия на экосистему Земли. Дальние предки такого существа - гоминиды - появились, по разным оценкам, примерно от 3 до 1,8 миллиона лет назад, неандертальцы - примерно 200-100 тысяч, а современный Homo sapiens sapiens - лишь 40 тысяч лет назад. В геологии даже три миллиона лет укладываются в рамки хронологической погрешности, а 40 тысяч - лишь одна миллионная возраста Земли. Но даже за этот геологический миг люди успели основательно расшатать баланс ее экосистемы.

Прежде всего, рост популяции Homo sapiens впервые в истории не был сбалансирован природными ограничителями: ни недостатком пищи, ни пожирающими людей хищниками. С развитием орудий труда (особенно после промышленной революции) люди практически выпали из обычной трофической цепи и получили возможность размножаться почти беспредельно. Еще две тысячи лет назад их было около 300 миллионов, а к 2003 году численность земного населения возросла в 21 раз, до 6,3 миллиарда.

Второе. В отличие от всех других биологических видов, имеющих более или менее ограниченную среду обитания, люди расселились по всей земной поверхности, невзирая на почвенно-климатические, геологические, биологические и прочие условия. Уже поэтому степень их влияния на природу не сопоставима с влиянием любых других существ. И, наконец, благодаря своему интеллекту люди не столько приспосабливаются к природной среде, сколько приспосабливают эту среду к своим потребностям. И такое приспособление (еще недавно с гордостью говорили: "покорение природы") приобретает все более наступательный, даже агрессивный характер.

В течение многих тысячелетий люди почти не ощущали ограничений со стороны окружающей среды. А если и видели, что в ближайшей округе уменьшилось количество истребляемой ими дичи, истощились обрабатываемые почвы или луга для выпаса скота, то перекочевывали на новое место. И все повторялось. Природные ресурсы казались неисчерпаемыми. Лишь иногда такой сугубо потребитель ский подход к окружающей среде заканчивался плачевно. Более девяти тысяч лет назад шумеры для того, чтобы прокормить растущее население Месопотамии, стали развивать поливное земледелие. Однако созданные ими ирригационные системы со временем привели к заболачиванию и засолению почв, что и послужило основной причиной гибели шумерской цивилизации. Другой пример. Цивилизация майя, процветавшая на территории современных Гватемалы, Гондураса и юго-востока Мексики, потерпела крах около 900 лет назад главным образом из-за эрозии почвы и заиливания рек. Такие же причины вызвали падение древних земледельческих цивилизаций Междуречья в Южной Америке. Приведенные случаи лишь исключения из правила, которое гласило: черпай из бездонного колодца природы столько, сколько можешь. И люди черпали из него, не оглядываясь на состояние экосистемы.

К настоящему времени человек приспособил для своих надобностей около половины земной суши: 26% - под пастбища, по 11% - под пашни и лесоводство, остальные 2-3% - для строительства жилья, промышленных объектов, транспорта и сферы услуг. В результате вырубки лесов сельскохозяйственные угодья увеличились с 1700 года в шесть раз. Из доступных источников свежей пресной воды человечество использует больше половины. При этом почти половина рек планеты существенно обмелела или загрязнена, а около 60% из 277 крупнейших водных артерий перегорожены плотинами и прочими инженерными сооружениями, что привело к созданию искусственных озер, изменению экологии водоемов и устьев рек.

Люди ухудшили либо уничтожили места обитания множества представителей флоры и фауны. Только с 1600 года на Земле исчезли 484 вида животных и 654 вида растений. Более восьмой части из 1183 видов птиц и четвертой - из 1130 видов млекопитающих сегодня грозит исчезновение с лица Земли.

Мировой океан пострадал от человека меньше. Люди используют лишь восемь процентов его исходной продуктивности. Но и здесь он оставил свой недобрый "след", выловив до предела две трети морских животных и нарушив экологию многих других обитателей моря. Только на протяжении XX века была уничтожена почти половина всех прибрежных мангровых лесов и безвозвратно разрушена десятая часть коралловых рифов.

И, наконец, еще одно неприятное последствие быстро растущего человечества - его производственные и бытовые отходы. Из общей массы добытого природного сырья в конечный продукт потребления превращается не более десятой части, остальное идет на свалки. Отходов же органического происхождения человечество, по некоторым подсчетам, производит в 2000 раз больше, чем вся остальная биосфера. Сегодня экологический "след" Homo sapiens перевешивает негативное влияние на окружающую среду всех прочих живых существ, вместе взятых. Человечество вплотную подошло к экологическому тупику, вернее сказать - к краю обрыва. Со второй половины XX века нарастает кризис всей экологической системы планеты. Он порожден многими причинами. Рассмотрим лишь важнейшую из них - загрязнение земной атмосферы.

Технический прогресс создал множество способов ее загрязнения. Это различные стационарные установки, преобразующие твердое и жидкое топливо в тепловую или электрическую энергию. Это транспортные средства (автомобили и самолеты, бесспорно, лидируют) и сельское хозяйство с его гниющими отходами земледелия и животноводства. Это промышленные процессы в металлургии, химическом производстве и т. п. Это муниципальные отходы и, наконец, добыча ископаемого топлива (вспомним хотя бы постоянно дымящие факелы на нефте- и газопромыслах или терриконы отвалов возле угольных шахт).

Воздух отравляют не только первичные газы, но и вторичные, которые образуются в атмосфере в ходе реакции первых с углеводородами под воздействием солнечного света. Двуокись серы и разные соединения азота окисляют капли воды, собирающиеся в облаках. Такая подкисленная вода, выпадая в виде дождя, тумана или снега, отравляет почву, водоемы, губит леса. В Западной Европе вокруг крупных промышленных центров вымирает озерная рыба, а леса превращаются в кладбища мертвых, оголенных деревьев. Лесные животные в таких местах практически полностью гибнут.

Эти катастрофы, вызванные антропогенным загрязнением атмосферы, хоть и носят всеобщий характер, но все же пространственно более или менее локализованы: они охватывают лишь отдельные области планеты. Однако некоторые виды загрязнения приобретают планетарный масштаб. Речь идет о выбросах в атмосферу углекислого газа, метана и окиси азота, которые усиливают природный парниковый эффект. Выбросы в атмосферу двуокиси углерода создают около 60% дополнительного парникового эффекта, метана - примерно 20%, другие соединения углерода - еще 14%, остальные 6-7% вносит окись азота.

В естественных условиях содержание в атмосфере СО 2 на протяжении последних нескольких сотен миллионов лет составляет около 750 миллиардов тонн (примерно 0,3% общего веса воздуха в приземных слоях) и поддерживается на этом уровне благодаря тому, что избыточная его масса растворяется в воде и поглощается растениями в процессе фотосинтеза. Даже относительно небольшое нарушение этого баланса грозит существенными подвижками в экосистеме с трудно предсказуемы ми последствиями и для климата, и для приспособившихся к нему растений и животных.

За последние два столетия человечество внесло весомый "вклад" в нарушение такого равновесия. Еще в 1750 году оно выбрасывало в атмосферу только 11 миллионов тонн СО 2 . Спустя столетие объем выбросов возрос в 18 раз, достигнув 198 миллионов тонн, а еще через сто лет увеличился в 30 раз и составил 6 миллиардов тонн. К 1995 году эта цифра возросла вчетверо - до 24 миллиардов тонн. Содержание метана в атмосфере за истекшие два столетия повысилось примерно вдвое. А он по своей способности усиливать парниковый эффект в 20 раз превосходит СО 2 .

Последствия не замедлили сказаться: в XX веке средняя глобальная приземная температура повысилась на 0,6°С. Казалось бы - мелочь. Но и такого повышения температуры достаточно, чтобы XX век оказался самым теплым за последнее тысячелетие, а 90-е годы - самыми теплыми в прошлом столетии. Снежный покров земной поверхности с конца 1960-х годов сократился на 10%, а толщина льда в Северном Ледовитом океане за несколько минувших десятилетий уменьшилась более чем на метр. В результате уровень Мирового океана за последние сто лет повысился на 7-10 сантиметров.

Некоторые скептики относят антропогенное потепление климата к числу мифов. Дескать, существуют природные циклы колебания температуры, один из которых и наблюдается сейчас, а антропогенный фактор притянут за уши. Естественные циклы колебаний температуры околоземной атмосферы действительно существуют. Но они измеряются многими десятилетиями, некоторые - столетиями. Наблюдаемое же в последние два с лишним века потепление климата не только не вписывается в обычную природную цикличность, но и происходит неестественно быстро. Межправительственная комиссия по изменению климата, сотрудничающая с учеными из разных стран мира, сообщила в начале 2001 года, что антропогенные изменения становятся все более очевидными, что потепление ускоряется, а его последствия оказываются намного более тяжелыми, чем предполагалось раньше. Ожидается, в частности, что к 2100 году средняя температура земной поверхности в разных широтах может повыситься еще на 1,4-5,8°С со всеми вытекающими последствиями.

Потепление климата распределяется неравномерно: в северных широтах оно проявляется сильнее, чем в тропиках. Поэтому в нынешнем столетии наиболее ощутимо повысится зимняя температура на Аляске, в Северной Канаде, в Гренландии, в северной части Азии и на Тибете, а летняя - в Центральной Азии. Такое распределение потепления влечет за собой изменение динамики воздушных потоков, а потому и перераспределение осадков. А это в свою очередь порождает все больше природных катастроф - ураганов, наводнений, засух, лесных пожаров. В XX веке в таких катастрофах погибли около 10 миллионов человек. Причем число крупнейших катастроф и их разрушительные последствия нарастают. В 50-х годах имели место 20 крупномасштабных стихийных бедствий, в 70-х годах - 47, а в 90-х - 86. Причиненный природными катастрофами ущерб огромен (см. график).

Первые годы нынешнего столетия отмечены беспрецедентными наводнениями, ураганами, засухами и лесными пожарами.

И это только начало. Дальнейшее потепление климата в высоких широтах угрожает оттаиванием вечной мерзлоты в северной Сибири, на Кольском полуострове и в Приполярных областях Северной Америки. Это значит, что поплывут фундаменты под зданиями в Мурманске, Воркуте, Норильске, Магадане и десятках других городов и поселков, стоящих на мерзлом грунте (признаки приближения катастрофы уже отмечены в Норильске). Однако и это еще не все. Размораживается панцирь вечной мерзлоты, и открывается выход хранящимся под ним в течение тысячелетий огромным скоплениям метана - газа, вызывающего повышенный парниковый эффект. Уже зафиксировано, что метан во многих местах Сибири начинает просачиваться в атмосферу. Если климат здесь еще немного потеплеет, то выброс метана станет массовым. Итог - усиление парникового эффекта и еще большее потепление климата на всей планете.

Согласно пессимистическому сценарию из-за потепления климата к 2100 году уровень Мирового океана повысится почти на один метр. И тогда южное побережье Средиземного моря, западное побережье Африки, Южная Азия (Индия, Шри-Ланка, Бангладеш и Мальдивы), все прибрежные страны Юго-Восточной Азии и коралловые атоллы в Тихом и Индийском океанах станут ареной стихийного бедствия. В одном лишь Бангладеше море грозит затопить около трех миллионов гектаров земли и вынудить к переселению 15-20 миллионов человек. В Индонезии могут быть затоплены 3,4 миллиона гектаров и изгнаны из мест обитания не менее двух миллионов человек. Для Вьетнама эти цифры составили бы два миллиона гектаров и десять миллионов переселенцев. А общее число таких пострадавших по всему миру может достичь примерно миллиарда.

По оценкам экспертов ЮНЭП, издержки, вызываемые потеплением климата Земли, продолжат нарастать. Расходы на защитные сооружения от повышающегося уровня моря и высоких штормовых волн могут составить один миллиард долларов в год. Если концентрация СО 2 в атмосфере удвоится по сравнению с доиндустриальным уровнем, мировое сельское хозяйство и лесоводство вследствие засух, наводнений и пожаров будут ежегодно терять до 42 миллиардов долларов, а система водоснабжения уже к 2050 году столкнется с дополнительными издержками (около 47 миллиардов долларов).

Человек все более загоняет природу и самого себя в тупик, выбраться из которого все труднее. Выдающийся отечественный математик и эколог академик Н. Н. Моисеев предупреждал, что биосфера, как и всякая сложная нелинейная система, может утратить стабильность, в результате чего начнется ее необратимый переход в некое квазистабильное состояние. Более чем вероятно, что в этом новом состоянии параметры биосферы окажутся неподходящими для жизни людей. Поэтому не будет ошибкой сказать, что человечество балансирует на острие бритвы. Как долго оно сможет так балансировать? В 1992 году две самые авторитетные научные организации в мире - Британское королевское общество и Американская национальная академия наук совместно заявили: "Будущее нашей планеты висит на волоске. Устойчивого развития можно добиться, но только в том случае, если вовремя остановить необратимую деградацию планеты. Следующие 30 лет станут решающими". В свою очередь Н. Н. Моисеев писал, что "такая катастрофа может случиться не в каком-то неопределенном будущем, а, может быть, уже в середине наступающего XXI века".

Если эти прогнозы верны, то времени для поиска выхода остается, по историческим меркам, совсем немного - от трех до пяти десятилетий.

Как выбраться из тупика?

Многие сотни лет люди были абсолютно убеждены: человек создан Творцом в качестве венца природы, ее повелителя и преобразо вателя. Подобное самолюбование до сих пор поддерживается основными мировыми религиями. Более того, такую гомоцентрическую идеологию поддержал выдающийся отечественный геолог и геохимик В. И. Вернадский, сформулировавший в 20-х годах прошлого века идею перехода биосферы в ноосферу (от греческого nоos - разум), в своеобразный интеллектуальный "пласт" биосферы. "Человечество, взятое в целом, становится мощной геологической силой. И перед ним, перед его мыслью и трудом становится вопрос о перестройке биосферы в интересах свободно мыслящего человечества как единого целого", - писал он. Более того, "[человек] может и должен перестраивать трудом и мыслью область своей жизни, перестраивать коренным образом по сравнению с тем, что было раньше" (выделено мною. - Ю. Ш. ).

На самом деле, как уже говорилось, мы имеем не переход биосферы в ноосферу, а переход ее от естественной эволюции к неестественной, навязанной ей агрессивным вмешательством человечества. Это деструктивное вмешательство относится не только к биосфере, но и к атмосфере, гидросфере и отчасти к литосфере. Какое уж там царство разума, если человечество, даже осознав многие (хотя и не все) аспекты порожденной им деградации природной среды, не в состоянии остановиться и продолжает усугублять экологический кризис. Оно ведет себя в природной среде обитания, как слон в посудной лавке.

Настало горькое похмелье - острая необходимость найти выход. Его поиск затруднен, поскольку современное человечество весьма неоднородно - и по уровню технико-экономического и культурного развития, и по ментальности. Кто-то просто безразличен к дальнейшим судьбам мирового социума, а кто-то придерживается дедовской логики: выходили и не из таких передряг, выберемся и на этот раз. Надежды на "авось" вполне могут оказаться роковым просчетом.

Другая часть человечества понимает серьезность нависшей опасности, но вместо того, чтобы участвовать в коллективных поисках выхода, всю свою энергию направляет на разоблачение виновников сложившейся ситуации. Эти люди считают ответственными за кризис то либеральную глобализацию, то эгоистичные промышленно развитые страны, а то и просто "главного врага всего человечества" - США. Изливают собственный гнев на страницах газет и журналов, организуют массовые акции протеста, участвуют в уличных беспорядках и с наслаждением бьют витрины в городах, где проходят форумы международных организаций. Надо ли говорить, что подобные разоблачения и демонстрации не продвигают ни на шаг решение общечеловеческой проблемы, а скорее мешают этому?

Наконец, третья, весьма небольшая часть мирового сообщества не только понимает степень угрозы, но и концентрирует свои интеллектуальные и материальные ресурсы на поиске путей выхода из создавшегося положения. Она стремится разглядеть в тумане будущего перспективу и нащупать оптимальный путь, чтобы не оступиться и не сорваться в пропасть.

Взвесив реальные опасности и ресурсы, которыми располагает человечество в начале XXI века, можно сказать, что пока еще есть некоторые шансы выбраться из сложившегося тупика. Но требуется беспрецедентная мобилизация здравого рассудка и воли всего мирового сообщества, чтобы решить множество проблем в трех стратегических направлениях.

Первое из них - психологическая переориентация мирового социума, кардинальная смена стереотипов его поведения. "Чтобы выбраться из кризисов, порожденных техногенной цивилизацией, обществу придется пройти сложный этап духовной революции, как в эпоху Ренессанса, - считает академик B. C. Степин. - Придется вырабатывать новые ценности... Надо менять отношение к природе: нельзя рассматривать ее как бездонную кладовую, как поле для переделки и перепахивания". Такой психологический переворот невозможен без значительного усложнения логического мышления каждого индивида и перехода на новую модель поведения большинства человечества. Но, с другой стороны, он невозможен и без кардинальных изменений отношений внутри общества - без новых норм морали, без новой организации микро- и макросоциума, без новых взаимоотношений между разными социумами.

Такая психологическая переориентация человечества очень трудна. Придется ломать стереотипы мышления и поведения, сложившиеся на протяжении тысячелетий. И прежде всего нужен коренной пересмотр самооценки человека как венца природы, ее преобразователя и повелителя. Эта гомоцентрическая парадигма, на протяжении тысячелетий проповедуемая многими мировыми религиями, подкрепленная в XX веке еще и учением о ноосфере, должна быть отправлена на идеологическую свалку истории.

В наше время необходима иная система ценностей. Отношение людей к живой и неживой природе должно строиться не на противопоставлении - "мы" и "все остальное", а на понимании того, что и "мы", и "все остальное" суть равноправные пассажиры космического корабля под именем "Земля". Такой психологический переворот кажется маловероятным. Но вспомним, что в эпоху перехода от феодализма к капитализму переворот именно такого рода, хотя и меньших масштабов, произошел в сознании аристократии, которая традиционно делила общество на "мы" (люди голубой крови) и "они" (простолюдины и просто чернь). В современном демократическом мире такие представления стали аморальными. В индивидуальном и общественном сознании вполне могут и должны появиться и закрепиться многочисленные "табу" в отношении природы - своеобразный экологический императив, требующий соразмерения потребностей мирового социума и каждого человека с возможностями экосферы. Морали предстоит выйти за пределы межличностных или международных отношений и включить в себя нормы поведения в отношении живой и неживой природы.

Второе стратегическое направление - форсирование и глобализация научно-технического прогресса. "Поскольку назревающий экологический кризис, грозящий перерасти в глобальную катастрофу, вызван развитием производительных сил, достижениями науки и техники, то и выход из него немыслим без дальнейшего развития этих составляющих процесса цивилизации, - писал Н. Н. Моисеев. - Для того чтобы найти выход, потребуется предельное напряжение творческого гения человечества, бесчисленное количество изобретений и открытий. Поэтому необходимо как можно скорее максимально раскрепостить личность, создать возможности для раскрытия своего творческого потенциала любому способному к этому человеку".

Действительно, человечеству предстоит кардинально изменить сложившуюся веками структуру производства, предельно уменьшив в ней удельный вес добывающей промышленности, загрязняющего почву и грунтовые воды сельского хозяйства; перейти от углеводородной энергетики к ядерной; заменить автомобильный и авиационный транспорт, работающий на жидком топливе, каким-то иным, экологически чистым; существенно перестроить всю химическую промышленность, чтобы минимизировать загрязнение ее продуктами и отходами атмосферы, воды и почвы...

Некоторые ученые видят будущее человечества в уходе от техногенной цивилизации XX века. Ю. В. Яковец, например, полагает, что в постиндустриальную эпоху, которая представляется ему как "гуманистическое общество", "будет преодолен техногенный характер позднеиндустриального общества". На самом деле для предотвращения экологической катастрофы требуется максимальная интенсификация научно-технических усилий, чтобы создать и внедрить природоохранные технологии во все сферы жизнедеятельности человека: в сельское хозяйство, энергетику, металлургию, химическую промышленность, строительство, быт и т. п. Поэтому постиндустриальное общество становится не посттехногенным, а, напротив, супертехногенным. Другое дело, что вектор его техногенности меняется с ресурсопоглощения на ресурсосбе режение, с экологически грязных технологий на природоохранные.

Важно при этом иметь в виду, что такие качественно новые технологии становятся все более опасными, поскольку могут использоваться как во благо человечеству и природе, так и во вред им. Поэтому здесь требуются неуклонно растущие осмотрительность и осторожность.

Третье стратегическое направление - преодоление или хотя бы существенное сокращение технико-экономического и социокультурного разрыва между постиндустриальным центром мирового сообщества и его периферией и полупериферией. Ведь кардинальные технологические сдвиги должны произойти не только в высокоразвитых странах, располагающих крупными финансовы ми и кадровыми ресурсами, но и во всем развивающемся мире, который стремительно индустриализируется главным образом на базе старых, экологически опасных технологий и не имеет ни финансовых, ни кадровых возможностей внедрять природоохранные технологии. Технологические новинки, создающиеся пока лишь в постиндустриальном центре мирового сообщества, должны внедряться и на его индустриальной или индустриализи рующейся периферии. В противном случае здесь в растущих масштабах будут использоваться устаревшие, экологически опасные технологии и деградация природной среды планеты еще более ускорится. Остановить процесс индустриализации развивающихся регионов мира невозможно. Значит, нужно помочь им делать это так, чтобы свести к минимуму ущерб для экологии. Такой подход - в интересах всего человечества, в том числе населения высокоразвитых стран.

Все три стратегические задачи, стоящие перед мировым сообществом, беспрецедентны как по своей трудности, так и по значимости для дальнейших судеб человечества. Они теснейшим образом взаимосвязаны и взаимообусловлены. Провал в решении одной из них не позволит решить остальные. По большому счету - это экзамен на зрелость вида Homo sapiens, которому довелось стать "самым умным" среди животных. Настало время доказать, что он действительно умен и способен спасти от деградации земную экосферу и себя в ней.

Похожие публикации