Эковью спектрофотометр: описание, сферы применения. Спектрофотометр - принцип работы Как работает спектрофотометр

Отношений потоков. Обычно используется для измерения спектров пропускания или спектров отражения излучения. Спектрофотометр является основным прибором, используемым в спектрофотометрии .

Энциклопедичный YouTube

    1 / 1

    Введение в спектрофотометрию

Субтитры

В этом видеоуроке я хочу немного поговорить о спектрофотометрии. Запишу этот термин. «Спектрофотометрия» звучит довольно сложно, но на самом деле она основана на весьма простом принципе. Пусть у нас есть, скажем, два раствора, которые содержат некоторое растворенное вещество. Назовем первый раствором один, а другой -- раствором два. Предположим также, что наши мензурки имеют одинаковую ширину. Теперь пусть, скажем, раствор 1... Подпишу число 1 и число 2. Теперь скажем, что в растворе 1 меньше растворенного вещества. Это... это уровень воды. Итак, здесь меньше вещества. Пусть раствор будет желтым, или мы воспринимаем его желтым. Итак, здесь меньше вещества. Скажем, что в растворе номер 2 больше растворенного вещества. Итак, здесь больше. Я заштрихую его более плотно расположенными линиями. Концентрация растворенного вещества здесь выше. Подпишу: более высокая концентрация. Хорошо. А здесь более... более низкая концентрация. Теперь давайте подумаем о том, что произойдет, если мы направим свет через каждую из этих мензурок. Давайте просто предположим, что мы освещаем их светом с длиной волны, которая особенно чувствительна к веществу, которое мы там растворили. Я буду говорить пока в общем. Представим, что у меня есть некоторый свет определенной интенсивности. Давайте просто назовем ее падающей интенсивностью. Обозначим ее I0. Это определенная интенсивность. Что случится, когда свет выйдет с другой стороны этой мензурки? Некоторая его часть будет поглощена. Некоторая часть этого света на определенных частотах будет поглощена нашими маленькими молекулами внутри мензурки. И в результате будет меньше света на выходе с другой стороны. Особенно меньше на тех частотах, на которых эти молекулы в растворе будут поглощать свет. Таким образом, у вас будет меньше света, выходящего с другой стороны. Света... света будет меньше. Я обозначу его I1. Теперь в этой ситуации, если мы осветим раствор тем же количеством света, то есть I0. Это должна быть стрелка, не получилась. И то же количество света, то же значение I0. Если мы направим то же самое количество света в эту мензурку, такое же количество, ту же самую интенсивность света, то что произойдет? Эти специфические частоты света будут сильнее поглощаться, когда свет пройдет через эту мензурку. Просто он будет сталкиваться с большим числом молекул из-за того, что здесь более высокая концентрация. Свет, который выходит из раствора с более высокой концентрацией... Я обозначу его интенсивность I2. Здесь будет более низкая интенсивность прошедшего света, чем здесь. В этом случае I2 будет иметь низкую интенсивность и она будет меньше чем I1. Надеюсь, что это понятно. Эти световые фотоны, как можно себе представить, будут врезаться в большее число молекул. Они будут поглощаться большим числом молекул. Поэтому проходить их будет меньше по сравнению с теми вот здесь, из-за того что здесь концентрация меньше. Это также справедливо в том случае, если бы мензурка была толще. Смотрите. Нарисую другую мензурку. Другую мензурку, которая, например, в два раза шире... В два раза шире... и пусть в ней будет раствор с такой же концентрацией, как и в мензурке под номером 2. Мы присвоим ей номер 3. В ней та же концентрация, что и в номере 2. Я попытаюсь сделать ее максимально похожей на эту. И вы направили некоторое количество света сюда. В общем, вы хотите сосредоточиться на частотах, которые поглощаются наиболее сильно. Представьте, что вы светите тем же самым светом сюда. У вас тот же свет, который проходил насквозь, который выходит. Вот что фактически вы увидите. Итак, это I3 вот здесь, и что, вы думаете, будет происходить? Раствор с той же концентрацией, но этот свет прошел больший путь при такой же концентрации. И снова он будет сталкиваться с большим числом молекул и будет сильнее поглощаться. Таким образом, меньше света будет проходить. Итак, I2 меньше чем I1, а I3 вообще будет наименьшей. Если бы вы смотрели на проходящий свет, то здесь было бы меньше всего света, здесь было бы немного больше света, а здесь было бы больше всего света. Если вы бы посмотрели на него, если бы вы поместили ваш глаз вот сюда (это... это ресницы), вот сюда, то здесь вы бы увидели самый яркий свет. Здесь больше всего света попадает в ваш глаз. Здесь будет несколько более темный цвет, а здесь будет самый темный цвет. Это совершенно логично. Если вы что-нибудь растворите, если вы растворите небольшую порцию чего-то в воде, так чтобы она оставалась достаточно прозрачной. Если вы растворите большое количество некоторого вещества в воде, то она будет менее прозрачной. Если сосуд, в котором вы растворяете, или мензурка, которую вы взяли, существенно длиннее, то вода будет еще менее прозрачной. Надеюсь, это дает вам понимание спектрофотометрии. Итак, следующий вопрос: какая от этого польза? Почему это вообще меня волнует? Вообще-то вы могли бы на практике воспользоваться этой информацией. Вы могли бы посмотреть, как много света прошло по отношению к тому, как много вы направили, для того чтобы определить концентрацию раствора. Вот почему мы говорим об этом на уроке химии. Прежде, чем мы сделаем это (я покажу вам пример в следующем видеоуроке), позвольте мне дать определения некоторых терминов, касающихся методов измерения концентрации или способов измерения того, как много света прошло в зависимости от того, насколько много его было направлено. Первое понятие, которое я определю -- это коэффициент пропускания. Давайте запишем. Итак, люди, дававшие определение, сказали: «Знаете, нас интересует, сколько света прошло по сравнению с тем, сколько упало». Давайте определим коэффициент пропускания как отношение интенсивности, которая проходит... (В этом примере коэффициент пропускания раствора номер 1 будет интенсивностью, которая прошла, деленной на интенсивность, которая упала. Вот здесь коэффициент пропускания -- это интенсивность, которая вышла, деленное на интенсивность, которая упала. Как мы видим, это вот здесь будет меньшим числом. I2 меньше чем I1. Здесь будет меньший коэффициент пропускания, чем в растворе номер 1. Давайте назовем это коэффициент пропускания 2. Это коэффициент пропускания 3. Это свет, который выходит, который проходит, по отношению к свету, который падает. Это наименьшее число, за ним идет вот это, и за ним вот это. Итак, здесь у нас будет наименьший коэффициент пропускания. Здесь наименьшая прозрачность, за ней идет вот эта, за ней вот эта. Теперь еще один термин, который в какой-то степени является производным, но не в математическом смысле, он просто вытекает из пропускания, и мы увидим, что у него есть интересные свойства. Это оптическая плотность. Записываем. Здесь мы попытаемся определить, насколько хорошо вещество поглощает свет. Это является мерой того, насколько хорошо свет проходит. Большие числа говорят, что пропускание высокое. Но оптическая плотность показывает, насколько хорошо вещество поглощает. Так что это нечто противоположное. Если пропускание вещества хорошее, это означает, что оно поглощает плохо, т. е. оно не способно сильно поглощать. Если вещество поглощает хорошо, это означает, что оно пропускает плохо. Итак, оптическая плотность вот здесь. Она определяется как отрицательный логарифм коэффициента пропускания. Понятно? Этот логарифм берется по основанию 10. Или вы можете считать, что коэффициент пропускания, который вы уже определили как отрицательный логарифм от отношения света, который прошел... который прошёл, к свету... к свету, падающему на мензурку. Но наиболее простой способ -- это взять отрицательный логарифм от коэффициента пропускания. Если коэффициент пропускания является большим числом, то оптическая плотность малым числом, что логично. Если пропускается много света, то значение оптической плотности будет очень мало, это означает, что не поглощается практически ничего. Если коэффициент пропускания выражается малым числом, то это означает, что поглощается много. Так что это будет действительно большим числом. Это то, что дает нам отрицательный логарифм. Есть еще одна интересная вещь, относящаяся к этой теме. Это закон Бера-Ламберта, который вы могли бы проверить. Бера-Ламберта. Вообще-то мы будем использовать его в следующем видеоуроке, закон Бера-Ламберта. Вообще-то я не знаю историю открытия этого закона. Я уверен, что к нему имеет отношение некто по фамилии Бер (букв. пиво), я всегда представлял, что его первооткрыватель пропускал свет через пиво. Закон Бера-Ламберта говорит нам, что оптическая плотность пропорциональна... Я должен написать его так... Оптическая плотность пропорциональна... пропорциональна (это показывает, какое расстояние свет должен пройти в растворе)... Она пропорциональна длине пути, умноженной на концентрацию. Обычно мы используем молярность для выражения концентрации. Другими словами, можно сказать, что оптическая плотность равна некоторой константе, обычно обозначаемой малой буквой эпсилон вот так. И она зависит от раствора или исследуемого растворенного вещества, которое мы здесь имеем, температуры, давления и других подобных факторов. Она равна некоторой константе, умноженной на длину пути прохождения света в растворе и на концентрацию раствора. Позвольте мне пояснить сказанное. Эта величина вот здесь является концентрацией. Подпишу: концентрация. Причина, почему это очень полезно, состоит в том, что если у вас есть некоторый образец с известной концентрацией... Если есть какой-то образец с концентрацией, которая вам известна... Позвольте... позвольте мне нарисовать вот здесь вот. Это наша ось концентрации. Давайте подпишу. Мы измеряем ее в единицах... концентрация... Мы измеряем ее в единицах... в единицах молярности. Представим, что молярность начинается с нуля. Она принимает значения, ну, скажем, 0, 0,1; 0,2; 0,3 и так далее. Вот здесь вы измеряете оптическую плотность, по вертикальной оси. Вы измеряете оптическую плотность. Вот так. Теперь представим, что у вас есть некоторый раствор, и вы знаете концентрацию, вы знаете, что его молярная концентрация равна 0,1. Позвольте мне обозначить молярность буквой М. Вы измеряете его оптическую плотность и просто получаете здесь некоторое число. Итак, вы измеряете его оптическую плотность, и получаете его оптическую плотность. Это низкая концентрация, раствор слабо поглощает. Вы получаете, скажем, некоторое число здесь. Например, 0,25. И затем, допустим, вы берете другую известную концентрацию, ну, скажем, с молярностью 0,2. И вы говорите: «О, смотрите, здесь оптическая плотность равна 0,5». Позвольте мне отметить это другим цветом. Раствор имеет оптическую плотность вот здесь, равную 0,5. Я должен поставить 0 впереди: 0,5 и 0,25. Это говорит вам, что это линейная зависимость. Так что для любой концентрации оптическая плотность будет находиться на прямой. Если вы хотите небольшой экскурс в алгебру, то эпсилон в действительности будет характеризовать наклон этой прямой Эпсилон, умноженное на длину, будет наклоном. Я не хочу вас сильно запутать. Но важно уяснить, что у вас тут будет прямая. Вот она. Вот она... Причина ее полезности состоит в том, что вы можете использовать очень малую часть алгебры для нахождения уравнения прямой. Или вы можете просто посмотреть на нее в виде графика и сказать: «Окей, у меня были две известные концентрации, и была возможность определить оптическую плотность, потому что мне известна линейная зависимость, выражаемая законом Бера-Ламберта». Если бы вы просто продолжили проводить измерения, то все значения расположились бы вдоль этой прямой. Вы можете затем решать обратную задачу. Т. е. провести измерения для некоторой неизвестной концентрации. Вы могли бы определить ее оптическую плотность. Давайте представим, что имеется некоторая неизвестная концентрация, и вы определили, что ее оптическая плотность вот здесь. Скажем, 0,4, то есть раствор имеет оптическую плотность 0,4. Тогда вы можете просто перейти на эту прямую вот здесь, и вы скажете: «Отлично, тогда это должно быть концентрацией исследуемого вещества в численном выражении». Тогда вы могли бы измерить ее, или вы можете определить ее алгебраически. Так что это весьма близко к молярности 0,2 или чуть меньше чем молярность 0,2. Мы разберем практический пример в следующем видеоуроке. Subtitles by the Amara.org community

Применение

Спектрофотометры могут работать в различных диапазонах длин волн - от ультрафиолетового до инфракрасного . В зависимости от этого приборы имеют разное назначение.

Назначение

Основное назначение спектрофотометров в полиграфической отрасли - проведение точной линеаризации и калибровки процессов печати. Спектрофотометры предоставляют возможность проведения точечных и автоматизированных измерений для создания высококачественных ICC-профилей .

Конструкция

На рисунках приведены две основные схемы спектрофотометров, измеряющих спектральный апертурный коэффициент отражения данного объекта относительно рабочего стандарта с известной спектральной характеристикой:

Спектральная разрешающая способность - безразмерная величина, равная отношению длины волны излучения к спектральному разрешению на этой длине волны .

Спектральный диапазон это диапазон в пределах которого может работать спектрофотометр. Для большинства случаев в полиграфии оценивается спектр светового излучения в видимом диапазоне длин волн от 380 до 730 нм. Для некоторых случаев бывает необходимым оценить ультрафиолетовую и инфракрасную составляющую излучения. Спектрофотометры измеряют только спектр излучения. Все остальные характеристики рассматриваются по спектральным данным.

Межприборная согласованность - это разброс измеряемых значений одного и того же образца, измеряемого с помощью эталонного и исследуемого прибора.

Повторяемость определяет точность измерений, которые осуществляются теми же операторами при нескольких измерениях одинаковыми приборами одних и тех же образцов.

Спектрофотометр - это инструмент, который измеряет интенсивность излучения или количество фотонов на разных длинах волн. Этот научный инструмент также используется для исследовательских целей в молекулярной биологии для измерения роста бактерий.

Спектрофотометр идентифицирует передачу определенного вещества путем определения наблюдаемого цвета. Инструмент обычно используется для измерения концентрации РНК и . Кроме того, ферментативные и химические реакции изменяют цвет с течением времени, а спектрофотометр полезен для измерения различных изменений цвета.

Как работают спектрофотометры?

Спектрофотометр использует источник света для создания отдельных длин волн видимого света, одновременно создавая длины волн света в инфракрасном и ультрафиолетовом диапазонах. Дифракционная решетка и фильтры делят свет на отдельные длины волн, направляя небольшой диапазон длины волны через предоставленный образец. Фотодетектор преобразует свет, полученный через образец, в ток, отправленный в процессор сигналов. После того, как процессор сигналов преобразует ток, значения концентрации, поглощающая способность и коэффициент пропускания отображаются на цифровом дисплее прибора.

Устройство спектрофотометра

Каковы компоненты спектрофотометра?

Спектрофотометр имеет несколько частей, которые включают фильтр, фотодетектор, источник света и процессор сигналов. Однако два основных компонента состоят из фотометра и спектрометра. Фотометр измеряет интенсивность света, в то время как спектрометр измеряет, производит и рассеивает свет. Эти компоненты объединяются, образуя два разных типа спектрофотометра.

Типы спектрофотометров

  1. однолучевой;
  2. двухлучевой;
Существуют однолучевой спектрофотометр и двухлучевой спектрофотометр. Спектрофотометр с двойным лучом сравнивает интенсивность света между двумя световыми путями, в то время как однолучевой спектрофотометр измеряет интенсивность света до и после каждого образца. Спектрофотометр с двойным лучом измеряет коэффициент отражения различных жидких растворов и образца для испытаний, прежде чем давать точные значения на цифровом дисплее. Однако эти значения варьируются от 20 до 2500 нанометров.

Как использовать спектрофотометры?

Для использования спектрофотометра очистите кювету. Важно надеть перчатки, так как любые отпечатки пальцев или грязь, могут повлиять на результаты. Затем добавьте раствор и установите спектрофотометр на предпочтительную длину волны. Поместите пустую кювету внутрь инструмента и нажмите кнопку «установить нуль», чтобы калибровать прибор на желаемую длину волны. Добавьте решение для расчета поглощающей способности.

Закон Беэр-Ламберта в Спектрофотометрии

Для использования спектрофотометра важно понимать само понятие "спектр света" и знать закон Бера-Ламберта . Спектр состоит из радуги цветов, создаваемых, когда композитный свет, такой как белый свет, разделяется на несколько компонентных цветов. Спектрофотометрия использует источник света, коллиматор, монохроматор, раствор и детектор.

Уравнение закона Беэр-Ламберта показывает линейную зависимость между впитывающей способностью и концентрацией образца. Это понимание требует определения того, что поглощающая способность прямо пропорциональна длине пути кюветы, а также любому поглощению предпочтительного образца. Реакции измеряются увеличением поглощения, поскольку наблюдаются изменения цвета. Научные машины, такие как спектрофотометры или , помогают улучшить исследования в лабораториях химии, биологии и биохимии.

Где применяется спектрофотометр и как измеряет? Все, что Вы должны знать

Как уже говорилось, спектрофотометр является одним из научных инструментов, широко распространенных во многих исследовательских и промышленных лабораториях. Спектрофотометры используются для исследований в лабораториях физики, молекулярной биологии, химии и биохимии. Как правило, название относится к ультрафиолетовой видимой (UV-Vis) спектроскопии.

Энергия света зависит от длины волны, обычно обозначаемой как лямбда. Хотя электромагнитный спектр распространяется в огромном диапазоне длин волн, большинство лабораторий может измерять только небольшую их часть. UV-Vis Spectroscopy измеряет от 200 до 400 нанометров (нм) для измерений ультрафиолетового света и до приблизительно 750 нм в видимом спектре.

Для УФ-видимой спектроскопии образцы обычно содержатся и измеряются в небольших контейнерах, называемых кюветами. Они могут быть пластичными, если используются в видимом спектре, но должны быть кварцевыми или плавлеными кварцами, если используются для измерений в ультрафиолетовых лучах. Есть некоторые машины, которые могут использовать стеклянные пробирки.

Видимая спектроскопия часто используется в промышленности для колориметрии. Используя этот метод, образцы измеряются на нескольких длинах волн от 400 до 700 нм, и их профили поглощения сравниваются со стандартом. Этот метод часто используется производителями текстиля и чернил. Другими коммерческими пользователями UV-Vis Spectroscopy являются судебно-медицинские лаборатории и принтеры.

В биологических и химических исследованиях растворы часто измеряются путем измерения степени поглощения света на определенной длине волны. Значение, называемое коэффициентом экстинкции, используется для расчета концентрации соединения. Например, лаборатории молекулярной биологии используют спектрофотометры для измерения концентрации образцов ДНК или РНК. Иногда у них есть продвинутый аппарат, называемый спектрофотометром NanoDrop ™, который использует долю количества образца по сравнению с тем, который используется традиционными спектрофотометрами.

Чтобы количественная оценка была действительной, образец должен соответствовать закону Бера-Ламберта. Это требует, чтобы поглощение было прямо пропорционально длине пути кюветы и поглощению соединения. Есть таблицы коэффициентов вымирания, доступные для многих, но не для всех соединений.

Многие химические и ферментативные реакции меняют цвет с течением времени, и спектрофотометры очень полезны для измерения этих изменений. Например, полифенолоксидазы, которые приводят к коричневому цвету плодов, окисляют растворы фенольных соединений, превращая прозрачные растворы в те, которые имеют видимую окраску. Такие реакции могут быть проанализированы путем измерения увеличения поглощения при изменении цвета. В идеале скорость изменения будет линейной, и по этим данным можно рассчитать показатели. Более продвинутый спектрофотометр будет иметь термостатированный кюветный держатель для проведения реакций при точной температуре, идеальной для фермента.

Микробиологические и молекулярно-биологические лаборатории часто используют спектрофотометр для измерения роста культур бактерий. Эксперименты по клонированию ДНК часто проводятся на бактериях, и исследователи должны измерить стадию роста культуры, чтобы знать, когда проводить определенные процедуры. Они измеряют поглощение, которое известно как оптическая плотность (OD), на спектрофотометре. По ОД можно судить, активно ли делятся бактерии или начинают ли они умирать.

Спектрофотометры используют источник света для освещения массива длин волн через монохроматор. Затем это устройство пропускает узкую полосу света, и спектрофотометр сравнивает интенсивность света, проходящего через образец, с интенсивностью света, проходящей через контрольное соединение. Например, если соединение растворяют в этаноле, эталоном будет этанол. Результат отображается как степень поглощения разности между ними. Это указывает на поглощение образца соединения.

Причиной такого поглощения является то, что как ультрафиолетовый, так и видимый свет имеют достаточно энергии для возбуждения химических веществ до более высоких уровней энергии. Это возбуждение приводит к более высокой длине волны, которая видна, когда поглощение наносится на график в зависимости от длины волны. Различные молекулы или неорганические соединения поглощают энергию на разных длинах волн. Те с максимальным поглощением в видимой области видны как окрашенные человеческим глазом.

Растворы соединений могут быть прозрачными, но поглощать в УФ-диапазоне. Такие соединения обычно имеют двойные связи или ароматические кольца. Иногда имеется один или несколько обнаруживаемых пиков, когда степень поглощения отображается в зависимости от длины волны. Если это так, это может помочь в идентификации некоторых соединений путем сравнения формы графика с формой известных контрольных графиков.

Существует два типа ультрафиолетовых спектрофотометров: однолучевой и двухлучевой. Они отличаются тем, как они измеряют интенсивность света между эталонным и тестовым образцом. Двухлучевые машины измеряют эталонный и тестовый состав одновременно, в то время как однолучевые машины измеряют до и после добавления тестируемого состава.

Фотометрические исследования проводят с помощью фотоколориметров и спектрофотометров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определенным веществом окрашенное соединение. Если раствор сравнения при этом остается бесцветным и, следовательно, не поглощает лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду.

Устройство и принцип действия фотометрических приборов рассмотрим на примере колориметра фотоэлектрического концентрационного КФК-2 и спектрофотометра СФ-46.

Однолучевой фотометр КФК-2 предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315-980 нм. Пределы измерения пропускания 100-5% (D = 0-1,3). Основная абсолютная погрешность измерения пропускания 1%.

Принципиальная оптическая схема фотоколориметра КФК-2 представлена на рис. 2.2.

Свет от галогенной малогабаритной лампы (1) проходит последовательно через систему линз, теплозащитный (2), нейтральный (3), выбранный цветной (4) светофильтры, кювету с раствором (5), попадает на пластину (6), которая делит световой поток на два: 10% света направляется на фотодиод при измерениях в области спектра 590-540 нм) и 90% - на фотоэлемент (при измерениях в области спектра 315-540 нм).

Характеристики светофильтров представлены в табл. 2.1.

Фотометр фотоэлектрический КФК-3 предназначен для измерения коэффициентов пропускания и оптической плотности прозрачных жидкостных растворов и прозрачных твердых образцов, а также для измерения скорости изменения оптической плотности вещества и определения концентрации вещества в растворах после предварительной градуировки фотометра. Принципиальная оптическая схема фотометра КФК-3 представлена на рис. 2.3.

Нить лампы (1) изображается конденсором (2) в плоскости диафрагмы Д1 (0,8 х 4,0), заполняя светом щель диафрагмы. Далее диафрагма Д1 изображается вогнутой дифракционной решеткой (4) и вогнутым зеркалом (5) в плоскости такой же щелевой диафрагмы Д 2 (0,8 х 4,0). Дифракционная решетка (6) и зеркало создают в плоскости диафрагмы Д 2 растянутую картину спектра. Поворачивая дифракционную решетку вокруг оси параллельной штрихам решетки, выделяют щелью диафрагмы Д 2 излучение любой длины волны от 315 до 990 нм. Объектив (7, 8) создает в кюветном отделении слабо светящийся пучок света и формирует увеличенное изображение щели Д 2 перед линзой (10). Линза (10) сводит пучок света на приемнике (11) в виде равномерно освещенного светового кружка. Для уменьшения влияния рассеянного света в ультрафиолетовой области спектра за диафрагмой Д1 установлен световой фильтр (3), который работает в схеме при измерениях в спектральной области 315-400 нм, а затем автоматически выводится. В кюветное отделение (между объективом 7, 8 и линзой 10) устанавливаются прямоугольные кюветы (9).

Фотометр предназначен для применения в сельском хозяйстве, медицине, на предприятиях водоснабжения, в металлургической, химической, пищевой промышленности и других областях. Пределы измерения коэффициента пропускания - 0,1-100%, оптической плотности - 0-3%.

Спектрофотометр СФ-46 предназначен для измерения спектральных коэффициентов пропускания жидких и твердых веществ в области спектра от 190-1100 нм.

Спектрофотометр СФ-46 - стационарный прибор, рассчитанный на эксплуатацию в лабораторных помещениях, без повышенной опасности поражения электрическим током.

Диапазон измерения спектральных коэффициентов пропускания от 1 до 100%.

Абсолютная погрешность измерения не превышает 1%, а стандартное отклонение пропускания - не более 0,1%.

В основу работы спектрофотометра СФ-46 положен принцип измерения отношения двух световых потоков: потока, прошедшего через исследуемый образец, и потока, падающего на исследуемый образец (или прошедшего через контрольный образец).

Световой пучок от осветителя попадает в монохроматор через входящую щель и разлагается дифракционной решеткой в спектр. В монохроматический поток излучения, поступающий из выходной щели в кюветное отделение, поочередно вводятся контрольный и исследуемый образцы. Излучение, прошедшее через образец, попадает на катод фотоэлемента в приемно-усилительном блоке. Электрические сигналы на резисторе, включенном в анодную цепь фотоэлемента, пропорциональны потокам излучения, падающим на фотокатод.

Усилитель постоянного тока с коэффициентом усиления, близким к единице, обеспечивает передачу сигналов на вход микропроцессорной системы (МПС), которая по команде оператора поочередно измеряет и запоминает напряжения UТ, U 0 и U, пропорциональные темновому току фотоэлемента, потоку, прошедшему через исследуемый образец. После измерения МПС рассчитывает коэффициент пропускания исследуемого образца по формуле

В режиме определения оптической плотности образца МПС начислит оптическую плотность по формуле

Значение измеренной величины высвечивается на цифровом фотометрическом табло.

На рис. 2.4 представлена структурная схема, а на рис. 2.5 - оптическая схема спектрофотометра СФ-46.


Излучение от источника (1 или Г) падает на зеркальный конденсатор (2), который направляет его на плоское поворотное зеркало (3) и дает изображение источника излучения в плоскости линзы (4), расположенной вблизи входной щели (5) монохроматора.

Прошедшее через входную щель излучение падает на вогнутую дифракционную решетку (6) с переменным шагом и криволинейным штрихом. Решетка изготовляется на сферической поверхности, поэтому, помимо диспергирующих свойств, она обладает свойством фокусировать спектр. Применение переменного шага и криволинейного штриха значительно уменьшает аберрационное искажение вогнутой дифракционной решетки и позволяет получить высокое качество спектра во всем рабочем спектральном диапазоне.

Дифракционный пучок фокусируется в плоскости выходной щели (7) монохроматора, расположенной над входной щелью (5). Сканирование осуществляется поворотом дифракционной решетки, при этом монохроматическое излучение различных длин волн проходит через выходную щель (7) и линзу (8), контрольный или исследуемый образец, линзу (9) и с помощью поворотного зеркала (10) попадает на светочувствительный слой одного из фотоэлементов (11 или 12).

Для обеспечения работы спектрофотометра в широком диапазоне спектра используются два фотоэлемента два источника излучения сплошного спектра.

Сурьмяно-цезиевый фотоэлемент с окном из кварцевого стекла применяется для измерения в области спектра от 186 до 700 нм, кислородно-цезиевый фотоэлемент - для измерения в области спектра от 600 до 1100 нм. Длина волны, при которой следует переходить от измерений с одним фотоэлементом к измерениям с другим фотоэлементом, указывается в паспорте.

Спектрофотометрия – экспериментальный метод, который позволяет измерить концентрацию растворенных веществ по количеству поглощаемого раствором света. Высокая эффективность данного метода обусловлена тем, что различные соединения по-разному поглощают свет с той или иной длиной волны. По количеству прошедшего сквозь раствор света можно выяснить, какие соединения присутствуют в растворе, и определить их концентрации. В лабораториях для этого используют специальный прибор – спектрофотометр.

Шаги

Часть 1

Подготовка образцов

    Включите спектрофотометр. Большинству спектрофотометров необходим предварительный разогрев – это помогает получить более точные результаты. Включите прибор и подождите хотя бы 15 минут, прежде чем приступать к измерениям.

    • Используйте время разогрева прибора для подготовки образцов.
  1. Помойте кюветы и пробирки. При выполнении лабораторной работы в школе вам могут выдать одноразовые пробирки, которые не нужно чистить. Если же вы используете многоразовые кюветы или пробирки, перед работой их необходимо как следует вымыть. Тщательно помойте всю посуду деионизированной водой.

    Залейте в кювету требуемое количество исследуемой жидкости. Максимальный объем некоторых кювет составляет 1 миллилитр (мл), в то время как пробирки могут быть рассчитаны на 5 миллилитров. Для получения точных результатов необходимо, чтобы луч лазера проходил через жидкость и не задевал пустую часть емкости.

    Приготовьте контрольный раствор. Контрольный, или холостой раствор представляет собой чистый растворитель, без присутствующих в других образцах примесей. Например, если вы растворили в воде соль, в качестве холостого раствора следует взять простую воду. Если при этом вы окрасили воду в красный цвет, в качестве холостого раствора также необходимо взять красную воду. Холостой раствор должен иметь тот же объем, что и исследуемые растворы, и его следует налить в такую же емкость.

    Протрите наружную поверхность кюветы. Прежде чем поместить кювету в спектрофотометр, необходимо убедиться, что она чистая, иначе частицы грязи и пыли могут исказить результаты. Протрите безворсовой тканью стенку кюветы снаружи, чтобы удалить возможные капли воды и частички пыли.

    Часть 2

    Проведение эксперимента
    1. Выберите и задайте длину волны света для анализа образцов. Для большей точности используйте свет с одной длиной волны (монохроматический свет). Необходимо выбрать такую длину волны, чтобы свет поглощался одним из соединений, которое предположительно входит в состав исследуемого раствора. Выставьте выбранную длину волны на спектрофотометре в соответствии с инструкциями по эксплуатации прибора.

      Откалибруйте прибор по холостому раствору. Поместите в держатель спектрофотометра кювету с холостым раствором и закройте крышку прибора. Аналоговые спектрофотометры снабжены шкалой со стрелкой, угол отклонения которой определяется интенсивностью прошедшего света. В случае холостого раствора стрелка отклонится вправо. Запишите показания прибора на случай, если они понадобятся вам в дальнейшем. Затем переведите стрелку в нулевое положение с помощью ручки настройки (при этом холостой раствор должен по-прежнему оставаться в приборе).

      • Цифровые спектрофотометры вместо шкалы снабжены дисплеем, и их можно откалибровать таким же образом. Установите ноль для холостого раствора с помощью кнопок настройки.
      • Калибровка сохранится и после того, как вы достанете холостой раствор. При работе с остальными образцами свет, который поглощается беспримесным растворителем, будет автоматически вычитаться из показаний прибора.
    2. Достаньте кювету с холостым раствором и проверьте калибровку. В отсутствие холостого раствора стрелка должна остаться на нулевой отметке (или на дисплее должен сохраниться ноль). Вновь поместите в прибор холостой раствор и убедитесь в том, что спектрофотометр по-прежнему показывает ноль. При правильной калибровке прибор должен показывать ноль и с холостым раствором, и без него.

      • В случае ненулевых показаний прибора повторите калибровку с холостым раствором.
      • В случае дальнейших проблем попросите о помощи или обратитесь к обслуживающему прибор техническому персоналу.
    3. Измерьте оптическую плотность экспериментального образца. Достаньте из прибора холостой раствор и поместите в него исследуемый образец. Подождите примерно 10 минут, пока стрелка не успокоится или пока не перестанут изменяться цифры на дисплее. После этого запишите значение коэффициента пропускания и/или оптической плотности.

      • Чем больше света проходит через образец, тем меньше света он поглощает. Обычно записывают значения оптической плотности, которые имеют вид десятичной дроби, например 0,43.
      • Повторите измерения для каждого образца по меньшей мере три раза и найдите средние значения. Таким образом вы получите более точные результаты.
    4. Повторите эксперимент для других длин волн. Образец может содержать несколько неизвестных примесей, которые поглощают свет при разной длине волны. Чтобы исключить неопределенность, повторите измерения с шагом 25 нанометров для всего спектра. Это позволит вам определить другие соединения, которые входят в состав изучаемого раствора.

В современном мире исследование веществ, субстанций и разного рода излучений крайне важно для дальнейших технологических разработок. Высокоточный анализ объекта позволяет собрать о нем данные, которые невозможно получить традиционными метрологическими средствами. Для таких целей в разных сферах используется спектрометр. Это устройство, с помощью которого можно определять характеристики цветовых покрытий, световых излучений и элементного состава твердотельных материалов.

Задачи спектрометрии

Общее назначение спектрометра - средство анализа, которое дает представление о различных веществах и отдельных параметрах конденсированных сред. А в качестве целевого объекта может выступать излучение, жидкость, твердые вещества и даже молекулы.

Каждый спектрометр может работать с конкретными элементами или средами, причем в ограниченных частотных диапазонах. Существуют универсальные модели с расширенными эксплуатационными характеристиками, но для работы с такой аппаратурой требуются специальные механические манипуляции.

Для чего используют спектрометры универсального и специализированного назначения? Первые подходят для генерации параметров серийных импульсов с помощью частотной гребенки, а вторые применяются для узких задач, связанных с однотипными замерами в определенных условиях. Например, если периодически требуется фиксировать световой диапазон на рабочей площадке.

Сегодня также получили распространение квантовые модели спектрометров, которые находят применение в потоковом сканировании материалов, производя контроль широкого диапазона разных веществ и сред на высокой скорости.

Оптическая щель прибора

Основные рабочие компоненты спектрометра представляют собой входную щель и дифракционную решетку. Щель служит для пропуска и визуализации излучений, поступающих в анализатор прибора через специальную полость. Она определяет световой поток, который отправляется на оптическую область детектора. Входной контур может иметь разную ширину, в зависимости от общего назначения спектрометра, - это диапазон от 5 до 800 мкм, в среднем. Высота щели в стандартном исполнении составляет 1 мм.

Дифракционная решетка спектрометра

Не менее ответственным элементом является и дифракционная решетка спектрометра. Это компонент, генерирующий диапазоны по длине световой волны, а также влияющий на разрешающую способность детектора. На практике данная решетка будет определять угол блеска и частоту световых штрихов.

Существуют голографические и нарезные решетки. Разница между ними обуславливается конфигурацией распределения лазерных пучков на светочувствительном слое и общими спектральными характеристиками.

Виды спектрометров

Среди широкого разнообразия данных приборов можно выделить следующие их разновидности:

  • Блескомер. Это спектрометр, ориентирующийся на измерение блеска. Применяется в случаях, когда этот параметр выступает качественной характеристикой.
  • Спектрофотометр. С помощью этого устройства анализируется спектральный состав посредством определения длины электромагнитного излучения в оптическом диапазоне. Выходные данные представляются в виде фотометрии и могут применяться для контроля печати.
  • Колориметр. В данном случае речь идет о разновидности цветового спектрометра. Это прибор для измерения интенсивности и температуры оттенков с поправкой на контрольную цветовую шкалу.
  • Экспонометр. Определяет экспозицию в фотографии и кинематографии.
  • Спектрорадиометр. В основу этого аппарата заложена оптическая система, накапливающая спектры и производящая их подсчет. Сначала сканированием фиксируются сведения о спектре, а затем эти данные преобразуются в электрический сигнал.
  • Яркометр. Устройство, определяющее яркость световых источников.
  • аппарат представляет сведения об освещенности.

Приборы могут выполнять по отдельности каждую из этих функций, а могут и совмещать несколько операций. Многофункциональные промышленные спектрометры способны работать со светом, красками и другими рабочими средами в контексте изучения разных параметров.

Портативные и стационарные аппараты

Эта классификация в большей мере определяет разделение по технико-конструкционным и коммуникационным характеристикам. Портативные (мобильные, карманные) устройства внешне напоминают небольшие тестеры или мультиметры. Это компактные аппараты, которыми можно контролировать цвета на поверхностях со сложной геометрией, где невозможно применение стационарного оборудования. Причем, несмотря на маленькие размеры, приборы такого типа эффективно справляются с анализом разных покрытий, независимо от текстуры и степени зернистости.

Стационарный спектрометр - это более функциональный аппарат, обеспеченный мощными оптическими элементами и средствами обработки данных. Как правило, он имеет собственный микропроцессор с системой визуального представления зарегистрированных спектров. Пользователь может работать с собственным LCD-дисплеем и клавиатурой оборудования.

Принцип действия световых спектрометров

Действует спектрометр следующим образом:

  • На первом этапе прибор регистрирует и накапливает спектры света, после чего информация проходит оцифровку сигнала с дальнейшим анализом в специальной программе.
  • Переработка первичного светового потока происходит в оптическом волокне по мере прохождения сквозь узкую апертуру.
  • Далее рассеянный свет направляется в уже упомянутую дифракционную решетку, которая рассеивает поток под разными углами.
  • На заключительной стадии зафиксированные детектором фотоны преобразуются в электрический сигнал, который обрабатывается в компьютере.

А как работает спектрометр света с программным обеспечением? Через USB-порт аппарат передает электроны компьютеру, в котором производится интерполяция сигнала. В простейших моделях выполняются графики с распределением спектров по длине волны. Более сложная техника дополнительно производит калибровку и осуществляет многочисленные спектральные операции на основе полученных данных и т. д.

Принцип действия спектрометра красок

Обычно используются приборы для точного определения оттенков на текстурных и структурированных поверхностях. Как работает спектрометр красок? Непосредственно получение данных выполняет оптическая система, после чего производится анализ информации и ее переработка в насадках апертуры. Большинство таких аппаратов оснащается импульсными ксеноновыми лампами, которые и фиксируют спектры длиной волны от 360 до 740 нм в среднем. На выходе составляется график с колориметрическими значениями.

Заключение

Спектрометры при всей сложности своего устройства имеют обширную область применения. Их используют в научных исследованиях, при контроле продукции на производствах, в строительстве при оценке качества конструкции, а также в сельском хозяйстве и бытовой сфере. Дело в том, что спектрометр - это прибор, контролирующий характеристики, которые могут иметь значение для каждого человека в зависимости от обстоятельств. Анализ света, например, позволит организовать комфортное освещение как на предприятиях, так и в домашних условиях. Работа с краской, в свою очередь, позволит и рядовому автомобилисту подобрать оптимальную лакокрасочную смесь для ремонта кузова, и производителю облицовки успешно изготовить материал с заданной дизайнером фактурой.

Похожие публикации