"определение масс – инерционных характеристик тела спортсмена". Инерционная характеристика Инерционные характеристики

Контрольная расчетно-графическая работа

"ОПРЕДЕЛЕНИЕ МАСС – ИНЕРЦИОННЫХ ХАРАКТЕРИСТИК ТЕЛА СПОРТСМЕНА"

Теоретические сведения

Физические свойства звеньев тела человека характеризуются их весом (массой), положением центра масс и главными центральными сегментами инерции относительно трех осей.

Для определения масс, координат центров масс и моментов инерции сегментов применяются либо экспериментальные, либо расчетные методы, причем последние используются гораздо чаще.

Наиболее употребительный метод расчета масс – инерционных характеристик звеньев тела спортсмена основан на результатах аналитической обработки данных антропометрических исследований. Он предусматривает использование регрессионных зависимостей вида:

X i = b 0 i + b 1 i * P + b 2 i * H

где - i условный номер звена

X i - рассчитываемая масс – инерционных характеристика

(вес, координата масс или момент инерции -го звена)

^ P - вес тела человека (кг)

H - рост человека (см)

b 0 i b 1 i b 2 i - коэффициенты уравнений множественной регрессии,

значение которых приведены в таблицах 1-5

ТАБЛИЦА 1

Коэффициенты для вычисления веса сегментов


i

Наименование сегмента

b 0 i

b 1 i

b 2 i

1

Стопа

0,0880

0,0880

0,00730

2

Голень

-1,5920

0,03620

0,01210

3

Бедро

0,01210

0,14630

0,01370

4

Кисть

-0,1165

0,00360

0,00175

5

Предплечье

0,3185

0,01445

-0,00144

6

Плечо

0,2500

0,02012

-0,00270

7

Голова

1,2960

0,01710

0,01430

8

Верхняя часть туловища

8,2144

0,18620

-0,05840

9

Средняя часть туловища

7,1810

0,22340

-0,06630

10

Нижняя часть туловища

-7,4980

0,09760

0,04896

Х1 = -0,829 + 0,00770 * 50 + 0,00730 * 167 = 0,775


Х2= -1,5920 + 0,03620 * 50 + 0,01210 * 167 = 2,239
Х3= 0,01210 + 0,14630 *50 + 0,01370 *167 =9,615
Х4= -0,1165 + 0,00360 * 50 + 0,00175 = 0,356
Х5= 0,3185 + 0,01445 *50 + -0,00144 *167= 0,801
Х6= 0,2500 + 0,02012 * 50 + -0,00270 * 167 = 0,805
Х7= 1,2960 + 0,01710 * 50 + 0,01430 * 167 = 4,359
Х8= 8,2144 + 0,18620 * 50+ -0,05840 * 167 = 7,772
Х9= 7,1810 + 0,22340 * 50 + -0,06630 * 167 = 7,279
Х10= -7,4980 + 0,09760 * 50 + 0,04896 * 167 = 5,559

ТАБЛИЦА 2

Коэффициент для определения центра масс на продольной оси сегмента


i

Наименование сегмента

b 0 i

b 1 i

b 2 i

1

Стопа

3,767

0,0650

0,0330

2

Голень

-6,050

-0,0390

0,1420

3

Бедро

-2,420

0,0380

0,1350

4

Кисть

4,110

0,0260

0,0330

5

Предплечье

0,192

-0,0280

0,0930

6

Плечо

1,670

0,0300

0,0540

7

Голова

9,357

-0,0025

0,0230

8

Верхняя часть туловища

3,320

0,0076

0,0470

9

Средняя часть туловища

1,398

0,0058

0,0450

10

Нижняя часть туловища

1,182

0,0180

0,0434

Х1 = 3,767 + 0,0650 * 50 + 0,0330 * 167 = 12,528
Х2= -6,050 + -0,0390 * 50 + 0,1420 * 167 = 15,714
Х3= -2,420 + 0,0380 * 50 + 0,1350 * 167 = 22,025
Х4= 4,110 + 0,0260 * 50 + 0,0330 * 167 = 10,921
Х5= 0,192 + -0,0280 * 50 + 0,0930 *1 67 = 14,323
Х6= 1,670 + 0,0300 * 50 + 0,0540 * 167 = 12,188
Х7= 9,357 + -0,0025 * 50 + 0,0230 * 167 = 13,073
Х8= 3,320 + 0,0076 * 50 + 0,0470 * 167 = 11,549
Х9= 1,398 + 0,0058 * 50 + 0,0450 *167 = 9,203
Х10= 1,182 + 0,0180 * 50 + 0,0434 * 167 = 9,329

ТАБЛИЦА 3

Коэффициент для вычисления главного центрального момента инерции относительно сагиттальной оси


i

Наименование сегмента

b 0 i

b 1 i

b 2 i

1

Стопа

-100,0

0,480

0,626

2

Голень

-1105,0

4,590

6,630

3

Бедро

-3557,0

31,700

18,610

4

Кисть

-19,5

0,170

0,116

5

Предплечье

-64,0

0,950

0,340

6

Плечо

-250,7

1,560

1,512

7

Голова

-78,0

1,171

1,519

8

Верхняя часть туловища

81,2

36,730

-5,970

9

Средняя часть туловища

618,5

38,800

-12,870

10

Нижняя часть туловища

-1568,0

12,000

7,741

Х1 = -100,0 + 0,480 * 50 + 0,626 * 167 = 28,542
Х2= -1105,0 + 4,590 * 50 + 6,630 * 167=231,71
Х3= -3557,0 + 31,700 * 50 + 18,610 * 167=1135,87
Х4= -19,5 + 0,170 * 50 +0,116*167=8,372
Х5= -64,0 +0,950 * 50 + 0,340 * 167 = 40,28
Х6= -250,7 + 1,560 * 50 + 1,512 * 167 =79,804
Х7= -78,0 + 1,171 * 50 + 1,519 * 167 = 234,223
Х8= 81,2 + 36,730 * 50 + -5,970 * 167 =920,71
Х9= 618,5 + 38,800 * 50 + -12,870 * 167 = 409,21
Х10=-1568,0 + 12,000 * 50 + 7,741 * 167 =324,747

ТАБЛИЦА 4

Коэффициент для вычисления главного центрального момента инерции относительно фронтальной оси


i

Наименование сегмента

b 0 i

b 1 i

b 2 i

1

Стопа

-97,09

0,414

0,614

2

Голень

-1152,00

4,594

6,815

3

Бедро

-3690,00

32,020

19,240

4

Кисть

-13,68

0,088

0,092

5

Предплечье

-69,70

0,855

0,376

6

Плечо

-232,00

1,525

1,343

7

Голова

-112,00

1,430

1,730

8

Верхняя часть туловища

367,00

18,300

-5,730

9

Средняя часть туловища

267,00

26,700

-8,000

10

Нижняя часть туловища

-934,00

11,800

3,440

Х1 = -97,09 + 0,414 * 50 + 0,614 * 167 = 26,148
Х2= -1152,00 + 4,594 * 50 + 6,815 * 167 = 215,805
Х3= -3690,00 + 32,020 * 50 + 19,240 * 167=1124,08
Х4= -13,68 + 0,088 * 50 + 0,092 * 167 =6,084
Х5= -69,70 + 0,855 * 50 + 0,376 * 167 =35,842
Х6= -232,00 + 1,525 *50 + 1,343 * 167 =68,531
Х7= -112,00 + 1,430 * 50 + 1,730 * 167 =248,41
Х8= 367,00 + 18,300 * 50 + -5,730 * 167 =325,09
Х9= 267,00 + 26,700 * 50 + -8,000 * 167 =266
Х10= -934,00 + 11,800 * 50 + 3,440 * 167 =230,48

ТАБЛИЦА 5

Коэффициент для вычисления главного центрального момента инерции относительно продольной оси


i

Наименование сегмента

b 0 i

b 1 i

b 2 i

1

Стопа

-15,48

0,1440

0,0880

2

Голень

-75,50

1,1360

0,3000

3

Бедро

-13,50

11,3000

-2,2800

4

Кисть

-6,26

0,0762

0,0347

5

Предплечье

5,99

0,3060

-0,0880

6

Плечо

-16,90

0,6620

0,0435

7

Голова

61,60

1,7200

0,0814

8

Верхняя часть туловища

561,00

36,0300

-9,9800

9

Средняя часть туловища

1501,00

43,1400

-19,8000

10

Нижняя часть туловища

-775,00

14,7000

1,6850

Х1 = -15,48 + 0,1440 * 50 +0,0880 * 167=6,416
Х2= -75,50 + 1,1360 * 50 + 0,3000 *167 = 31,4
Х3= -13,50 + 11,3000 * 50 + -2,2800 *167 =170,743
Х4= -6,26 + 0,0762 * 50 + 0,0347 * 167= 3,345
Х5= 5,99 + 0,3060 * 50 + -0,0880 *167= 6,594
Х6= -16,90 + 0,6620 * 50 + 0,0435 * 167= 23,465
Х7= 61,60 + 1,7200 * 50 + 0,0814 *167 =161,194
Х8= 561,00 + 36,0300 * 50 + -9,9800 *167= 695,84
Х9= 1501,00 + 43,1400 * 50 + -19,8000 *167 = 351,4
Х10= -775,00 + 14,7000 * 50 + 1,6850 *167 = 241,395

ВЫВОД: Инерционные характеристики раскрывают, каковы особенности тела человека и движимых им тела в их взаимодействиях. От инерционных характеристик зависит сохранение и изменение скорости. Все физические тела обладают свойством инертности, которое проявляется, а также в особенностях изменения его под действием сил. Понятие инерции раскрывается в первом законе Ньютона “Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы не заставят его изменить это состояние”.Говоря проще тело сохраняет свою скорость, а также под действием внешних сил изменяет ее.

Масса-это мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению. Масса тела характеризует, как именно приложенная сила может изменить движения тела. Одна и та же сила вызывает большое ускорение у тела с меньшей массой, чем у тела с большой массой.

Момент инерции- это мера инертности при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс вес его частиц на квадраты их расстояний от данной оси вращения. Отсюда видно, что момент инерции тела больше, когда его частицы дальше от оси вращения, а значит угловое ускорение тела под действием того же момента силы меньше, если частицы ближе к оси, то угловое ускорение больше, а момент инерции меньше. Значит, если приблизить тело к оси,то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче остановить его. Этим пользуются при движении вокруг оси.

Сила-это мера механического воздействия одного тела на другое в данный момент времени. Численно она определяется произведением массы тела и его ускорения, вызванного данной силой. Чаще всего говоря про силу и результат ее действия,но это применимо только к простейшему поступательному движению тела. В движениях человека как системы тел, где все движения частей тела вращательные, изменение вращательного движения зависят не от силы, а от момента силы.

Момент силы -это мера вращающего действия силы на тело. Он определяется произведением силы на ее плечо. Момент силы обычно считают положительным, когда сила вызывает поворот тела против часовой стрелки и отрицательным при повороте по часовой стрелке. Что бы сила могла проявить свое вращающее действие, она должна иметь плечо. Иначе говоря, она не должна проходить через ось вращения. Определение силы или момента силы, если известна масса или момент инерции, позволяет узнать только ускорение, т.е. как быстро изменяется скорость. Надо еще узнать, насколько именно измениться скорость. Для этого должны быть известно, как долго была приложена сила. Иначе говоря, следует определить импульс силы(или ее момент).

Импульс силы- это мера воздействия силы на тело за данный промежуток времени в поступательном движении. Он равен произведению силы и продолжительности ее действия. Любая сила, приложенная даже в малые доли секунды, имеет импульс. Именно импульс силы определяет изменение скорости, силой же обусловлено только ускорение. Во вращательном движении момент силы, действуя в течение определенного времени, создает импульс момента силы.

Импульс момента силы- это мера воздействия момента силы относительно данной оси за данный промежуток времени во вращательном движении. Наиболее общим показателем распределения масс в теле служит общий центр тяжести тела (ОЦТ).Как известно, центром тяжести называется точка тела, к которой как бы приложена равнодействующая всех сил тяжести тела. Во все стороны от этой точки, по любому направлению, моменты сил, действующих на все частицы тела в любом направлении, приложена к ОЦТ; поэтому в этом случае ОЦТ называют еще центром массы, или центром инерции.

Расположение ОЦТ необходимо знать при изучении статики для оценки условий равновесия тела. Путь движения- траектория ОЦТ во многих случаях дает ценные сведения об особенностях движения тела, так как отражает действие внешних сил на тело. ОЦТ не может перемещается иначе как под действием внешних сил. Одни внутренние силы некогда не когда не могут изменить продолжение и путь ОЦТ.

Общий центр тяжести тела располагается в зависимости от телосложения человека. У людей с более развитыми ногами ОЦТ относительного ниже, чем у людей с более мощной мускулатурой туловища и рук. У длинноногих людей ОЦТ анатомически расположен ниже, но он дальше от земли, чем у коротконогих.

Все движения человека и движимых им тел под действием сил изменяются по величине и направлению скорости. Чтобы раскрыть механизм движений (причины их возникновения и ход их изменения), исследуют динамические характеристики. К ним относятся инерционные характеристики (особенности самих движущихся тел), силовые (особенности взаимодействия тел) и энергетические (состояния и изменения работоспособности, биомеханических систем).

Инерционные характеристики раскрывают, каковы особенности тела человека и движимых им тел в их взаимодействиях. От инерционных характеристик зависит сохране­ние и изменение скорости.

Все физические тела обладают свойством инертности (или инерции), которое проявляется в сохранении движения, а также в особенностях изменения его под действием сил.

Понятие инерции раскрывается в первом законе Ньютона: "Всякое тело сохраняет свое состояние покоя или равно­мерного и прямолинейного движения до тех пор, пока внешние приложенные силы не заставят его изменить это состояние".

Говоря проще: тело сохраняет свою скорость, а также под действием внешних сил изменяет ее.

Масса - это мера инертности тела при поступательном движении. Она измеряется отношением величины при­ложенной силы к вызываемому ею ускорению.

Масса тела характеризует, как именно приложенная сила может изменить движение тела. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.

Момент инерции - это мера инертности тела при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс веек его частиц на квадраты их расстояний от данной оси вращения.

Отсюда видно, что момент инерции тела больше, когда его частицы дальше от оси вращения, а значит угловое ускорение тела под действием того же момента силы меньше; если частицы ближе к оси, то угловое ускорение больше, а момент инерции меньше. Значит, если приблизить тело к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.

Силовые характеристики. Известно, что движение тела мо­жет происходить как под действием приложенной к нему движущей силы, так и без движущей силы (по инерции), когда приложена только тормозящая сила. Движущие силы приложены не всегда; без тормозящих же сил движения не бывает. Изменение движений происходит под действием сил. Сила не причина движения, а причина изменения движения; силовые характеристики раскрывают связь действия силы с изменением движения.

Сила - это мера механического воздействия одного тела на другое в данный момент времени. Численно она определяется произведением массы тела и его ускорения, вызванного данной силой.



Чаще всего говорят про силу и результат ее действия, но это применимо только к простейшему поступательному движению тела. В движениях человека как системы тел, где все движения частей тела вращательные, изменение вращательного движения зависит не от силы, а от момента силы.

Момент силы - это мера вращающего действия силы на тело. Он определяется произведением силы на ее плечо.

Момент силы обычно считают положительным, когда сила вызывает поворот тела против часовой стрелки, и отрицатель­ным при повороте по часовой стрелке.

Чтобы сила могла проявить свое вращающее действие, она должна иметь плечо. Иначе говоря, она не должна проходить через ось вращения.

Определение силы или момента силы, если известна масса или момент инерции, позволяет узнать только ускорение, т.е. как быстро изменяется скорость. Надо еще узнать, на­сколько именно изменится скорость. Для этого должно быть известно, как долго была приложена сила. Иначе говоря, сле­дует определить импульс силы (или ее момента).

Импульс силы - это мера воздействия силы на тело за данный промежуток времени (в поступательном движении). Он равен произведению силы и продолжительности ее действия.

Любая сила, приложенная даже в малые доли секунды (например: удар по мячу) , имеет импульс. Именно импульс силы определяет изменение скорости, силой же обусловлено только ускорение.

Во вращательном движении момент силы, действуя в те­чение определенного времени, создает импульс момента силы.

Импульс момента силы - это мера воздействия момента силы относительно данной оси за данный промежу­ток времени (во вращательном движении).

Вследствие импульса как силы, так и момента силы возникают изменения движения, зависящие от инерционных свойств тела и проявляющиеся в изменении скорости (количество движения, кинетический момент) .

Количество движения – это мера поступательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Количество движения тела измеряется произведением массы тела на его скорость.

Кинетический момент (момент количества движе­ния) – это мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент равен произведению момента инерции относительно оси вращения на угловую скорость тела.

Соответствующее изменение количества движения происходит под действием импульса силы, а под действием импульса момента силы происходит определенное изменение кинетического момента (момента количества движения).

Таким образом, к ранее рассмотренным кинематическим мерам изменения движения (скорости и ускорению) добавляются динамические меры изменения движения (количество движения и кинетический момент). Совместно с мерами действия сил они отражают взаимосвязь сил и движения. Изучение их помогает понять физические основы двигательных действий человека.

Энергетические характеристики. При движениях человека силы, приложенные к его телу на некотором пути, совершают работу и изменяют положение и скорость звеньев тела, что изменяет его энергию. Работа характеризует процесс, при котором меняется энергия системы. Энергия же характеризует состояние системы, изменяющейся вследствие работы. Энергетические характеристики показывают, как меняются виды энергии при движениях и протекает сам процесс изменения энергии.

Работа силы - это мера действия силы на тело при некотором его перемещении под действием этой силы. Она равна произведению модуля силы и перемещения точки при­ложения силы.

Если сила направлена в сторону движения (или под острым углом к этому направлению), то она совершает положи­тельную работу, увеличивая энергию движения тела. Когда же сила направлена навстречу движению (или под тупым углом к его направлению), то работа силы отрицательная и энергия движения тела уменьшается.

Работа момента силы – это мера воздействия момента силы на тело на данном пути (во вращательном движении). Она равна произведению модуля момента силы и угла поворота.

Понятие работы представляет собой меру внешних воздействий, приложенных к телу на определенном пути, вызывающих изменения механического состояния тела.

Энергия – это запас работоспособности системы. Механическая энергия определяется скоростями движений тел в системе и их взаимным расположением; значит, это энергия перемещения и взаимодействия.

Кинетическая энергия тела – это энергия его механического движения, определяющая возможность совершить работу. При поступательном движении она измеряется половиной произведения массы тела на квадрат его скорости, при вращательном движении половиной произведения момента инерции на квадрат его угловой скорости.

Потенциальная энергия тела -это энергия его поло­жения, обусловленная взаимным относительным расположе­нием тел или частей одного и того же тела и характером их взаимодействия. Потенциальная энергия в поле сил тя­жести определяется произведением силы тяжести на раз­ность уровней начального и конечного положения над землей (относительно которого определяется энергия) .

Энергия как мера движения материи переходит из одно­го вида в другой. Так, химическая энергия в мышцах превра­щается в механическую (внутреннюю потенциальную упруго-деформированных мышц). Порожденная последней сила тяги мышц совершает работу и преобразует потенциальную энер­гию в кинетическую энергию движущихся звеньев тела и вне­шних тел. Механическая энергия внешних тел (кинетичес­кая) , передаваясь при их действии на тело человека его звень­ям, преобразуется в потенциальную энергию растягиваемых мышц-антаганистов и в рассеивающуюся тепловую энергию.

К ранее рассмотренным кинематическим мерам изменения движения (скорости и ускорению) добавляют­ся динамические меры изменения движения (количество движения и кинетический момент). Совместно с мерами действия сил они отражают взаимосвязь сил и движения. Изучение их помога­ет понять физические основы двигательных действий человека.

Динамика (от греч. dynamikós - сильный, от dýnamis - сила), раздел механики, посвященный изучению движения материальных тел под действием приложенных к ним сил. В основе динамики лежат три закона И. Ньютона, из которых как следствия получаются все уравнения и теоремы, необходимые для решения задач динамики. Все движения человека и движимых им тел под действием сил изменяются по величине и направлению скорости. Чтобы раскрыть механизм движений (причины их возникновения и ход их изменения), исследуют динамические характеристики. К ним относятся инерционные характеристики (особенности самих движущихся тел), силовые (особенности взаимодействия тел) и энергетические (состояния и изменения работоспособности, биомеханических систем).

Инерционные характеристики раскрывают особенности тела человека и движимых им тел в их взаимодействиях. От инерционных характеристик зависит сохранение и изменение скорости.

Все физические тела обладают свойством инертности (или инерции), которое проявляется в сохранении движения, а также в особенностях изменения его под действием сил.

Понятие инерции раскрывается в первом законе Ньютона: "Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы не заставят его изменить это состояние".

Масса - это мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению. Масса (m) - это количество вещества (в килограммах), содержащееся в теле или отдельном звене.

Масса тела характеризует, как именно приложенная сила может изменить движение тела. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.

Вес тела - это сила, с которой тело вследствие его притяжения к Земле действует на горизонтальную опору.

Момент инерции - это мера инертности тела при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс всех его частиц на квадраты их расстояний от данной оси вращения.

Отсюда видно, что момент инерции тела больше, когда его частицы дальше от оси вращения, а значит угловое ускорение тела под действием того же момента силы меньше; если частицы ближе к оси, то угловое ускорение больше, а момент инерции меньше. Значит, если приблизить тело к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.

Силовые характеристики. Известно, что движение тела может происходить как под действием приложенной к нему движущей силы, так и без движущей силы (по инерции), когда приложена только тормозящая сила. Движущие силы приложены не всегда; без тормозящих же сил движения не бывает. Изменение движений происходит под действием сил. Сила не причина движения, а причина изменения движения; силовые характеристики раскрывают связь действия силы с изменением движения.

Сила - это мера механического воздействия одного тела на другое в данный момент времени. Численно она определяется произведением массы тела и его ускорения, вызванного данной силой.

Чаще всего говорят про силу и результат ее действия, но это применимо только к простейшему поступательному движению тела. В движениях человека как системы тел, где все движения частей тела вращательные, изменение вращательного движения зависит не от силы, а от момента силы.

Момент силы - это мера вращающего действия силы на тело. Он определяется произведением силы на ее плечо.

Момент силы обычно считают положительным, когда сила вызывает поворот тела против часовой стрелки, и отрицательным при повороте по часовой стрелке.

Чтобы сила могла проявить свое вращающее действие, она должна иметь плечо. Иначе говоря, она не должна проходить через ось вращения.

Определение силы или момента силы, если известна масса или момент инерции, позволяет узнать только ускорение, т.е. как быстро изменяется скорость. Надо еще узнать, насколько именно изменится скорость. Для этого должно быть известно, как долго была приложена сила. Иначе говоря, сле­дует определить импульс силы (или ее момента).

Импульс силы - это мера воздействия силы на тело за данный промежуток времени (в поступательном движении). Он равен произведению силы и продолжительности ее действия.

Любая сила, приложенная даже в малые доли секунды (например: удар по мячу), имеет импульс. Именно импульс силы определяет изменение скорости, силой же обусловлено только ускорение.

Во вращательном движении момент силы, действуя в течение определенного времени, создает импульс момента силы.

Импульс момента силы - это мера воздействия момента силы относительно данной оси за данный промежуток времени (во вращательном движении).

Вследствие импульса, как силы, так и момента силы возникают изменения движения, зависящие от инерционных свойств тела и проявляющиеся в изменении скорости (количество движения, кинетический момент).

Количество движения - это мера поступательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Количество движения тела измеряется произведением массы тела на его скорость.

Кинетический момент (момент количества движения) - это мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент равен произведению момента инерции относительно оси вращения на угловую скорость тела.

Соответствующее изменение количества движения происходит под действием импульса силы, а под действием импульса момента силы происходит определенное изменение кинетического момента (момента количества движения).

Энергетические характеристики. Энергия (от греч. enérgeia - действие, деятельность), общая количественная мера движения и взаимодействия всех видов материи. Энергия в природе не возникает из ничего и не исчезает; она только может переходить из одной формы в другую. Механическая энергия - энергия механического движения и взаимодействия тел системы или их частей. Механическая энергия равна сумме кинетической и потенциальной энергии механической системы.

При движениях человека силы, приложенные к его телу на некотором пути, совершают работу и изменяют положение и скорость звеньев тела, что изменяет его энергию. Работа характеризует процесс, при котором меняется энергия системы. Энергия же характеризует состояние системы, изменяющейся вследствие работы. Энергетические характеристики показывают, как меняются виды энергии при движении, и протекает сам процесс изменения энергии.

Работа силы - это мера действия силы на тело при некотором его перемещении под действием этой силы. Она равна произведению модуля силы и перемещения точки приложения силы.

Если сила направлена в сторону движения (или под острым углом к этому направлению), то она совершает положительную работу, увеличивая энергию движения тела. Когда же сила направлена навстречу движению (или под тупым углом к его направлению), то работа силы отрицательная и энергия движения тела уменьшается.

Работа момента силы - это мера воздействия момента силы на тело на данном пути (во вращательном движении). Она равна произведению модуля момента силы и угла поворота.

Понятие работы представляет собой меру внешних воздействий, приложенных к телу на определенном пути, вызывающих изменения механического состояния тела.

Энергия - это запас работоспособности системы. Механическая энергия определяется скоростями движений тел в системе и их взаимным расположением; значит, это энергия перемещения и взаимодействия.

Кинетическая энергия тела - это энергия его механического движения, определяющая возможность совершить работу. При поступательном движении она измеряется половиной произведения массы тела на квадрат его скорости, при вращательном движении половиной произведения момента инерции на квадрат его угловой скорости.

Потенциальная энергия тела - то энергия его положения, обусловленная взаимным относительным расположением тел или частей одного и того же тела и характером их взаимодействия. Потенциальная энергия в поле сил тяжести определяется произведением силы тяжести на разность уровней начального и конечного положения над землей (относительно которого определяется энергия).

Энергия как мера движения материи переходит из одного вида в другой. Так, химическая энергия в мышцах превращается в механическую (внутреннюю потенциальную упруго-деформированных мышц). Порожденная последней сила тяги мышц совершает работу и преобразует потенциальную энергию в кинетическую энергию движущихся звеньев тела и внешних тел. Механическая энергия внешних тел (кинетическая), передаваясь при их действии на тело человека его звеньям, преобразуется в потенциальную энергию растягиваемых мышц-антаганистов, а также в рассеивающуюся тепловую энергию.

Разные тела изменяют скорость под действием сил по-разному. Это свойство тел называется инертностью.

Инертность – свойство физических тел, от которого зависит величина получаемых ускорений при их взаимодействии.

Инерционные характеристики – это характеристики тела или системы тел. Среди инерционных характеристик различают: массу тела и момент инерции тела .

Масса тела (m ) – мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению: m= F /a ,

где: m – масса; F – сила; a – ускорение.

Масса тела зависит от количества вещества, которым обладает тело и характеризует его свойство – как именно приложенная сила может изменить его движение. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.

В атлетизме при тренировке спортсмены используют штангу различной массы. Из личного опыта им известно, что придать штанге, имеющей большую массу ускорение значительно сложнее, чем штанге маленькой массы.

В случае вращательного движения мало знать массу тела, важно еще знать распределение масс относительно оси вращения. Например, фигурист при вращении прижимает руки к туловищу, а затем разводит их в стороны. Общая масса системы при этом не изменяется, а распределение масс становится другим, и это сказывается на движении, оно замедляется (Н.Б. Кичайкина, 2000). В механике существует характеристика, определяющая меру инертности тела во вращательном движении – момент инерции тела.

Момент инерции тела (J ) – мера инертности твердого тела при вращательном движении.

Момент инерции зависит от распределения массы относительно оси вращения. Его достаточно легко найти для простых геометрических фигур (шар, цилиндр и др.), но определить его в многозвенной системе тела человека при различных позах непросто.

Силовые характеристики.

Изменение скорости движения тел происходит под действием сил. Другими словами сила является не причиной движения, а причиной изменения движения. Силовые характеристики раскрывают связь действия силы с изменением движений. К силовым характеристикам при поступательном движении относятся:


· сила;

· импульс силы;


· импульс тела (количество движения ).

Сила (F ) – мера механического действия одного тела на другое. Сила определяется формулой: F =ma , где m – масса тела; a ускорение.

Импульс силы (S ) – мера воздействия силы на тело за промежуток времени. Эта механическая характеристика равна произведению силы на промежуток времени. Импульс силы характеризует площадь под кривой «время – сила» (рис. 3.2).

Значение импульса силы отталкивания не зависит от формы кривой «время-сила», а определяется только площадью под кривой. Зарегистрировать силу давления на опору позволяет методика тензодинамометрии . При этом характер кривой давления на опору зависит от уровня развития скоростно-силовых качеств спортсмена. Спортсмен, обладающий высоким уровнем развития скоростно-силовых качеств мышц ног способен развить высокий уровень силы за короткий промежуток времени.

Импульс тела (количество движения , Q ) – векторная величина, характеризующая его способность передаваться другому телу. Импульс тела определяется по формуле: Q = mV.

Импульс тела имеет то же направление, что и скорость. Если тело покоится, его импульс равен нулю. При взаимодействии тел их импульсы могут быть переданы от одного тела к другому. Например, в результате взаимодействия тела человека с опорой изменяется импульс тела (количество движения тела). Чем больший импульс приобретает тело человека в результате взаимодействия с опорой, тем выше или дальше будет прыжок.

К силовым характеристикам при вращательном движении относятся:


· момент силы;

· импульс момента силы;

· кинетический момент.


Момент силы (М ) – векторная величина, мера механического действия одного тела на другое при вращательном движении. Момент силы определяется по формуле: M = F h , где h – плечо силы.

Плечо силы – перпендикуляр, опущенный из оси вращения на линию действия силы.

Костные звенья в организме человека представляют собой рычаги. При этом результат действия мышцы определяется не столько развиваемой ею силой, сколько моментом силы. Особенностью строения опорно-двигательного аппарата человека является небольшие значения плеч сил тяги мышц. В то же время внешняя сила, например, сила тяжести, имеет большое плечо (рис. 3.3). Поэтому для противодействия большим внешним моментам сил мышцы должны развивать большую силу тяги.

Момент силы считают положительным, если сила вызывает поворот тела против часовой стрелки, и отрицательным, при повороте тела по часовой стрелке. На рис. 3.3. сила тяжести гантели создает отрицательный момент силы, так как стремится повернуть предплечье в локтевом суставе по часовой стрелке. Сила тяги мышц-сгибателей предплечья создает положительный момент, так как стремится повернуть предплечье в локтевом суставе против часовой стрелки.

Импульс момента силы (S м ) – мера воздействия момента силы относительно данной оси за промежуток времени.

Кинетический момент (К ) &‐ векторная величина, мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент определяется по формуле: K =Jω.

Кинетический момент при вращательном движении является аналогом импульса тела (количества движения) при поступательном движении.

Пример. При выполнении прыжка в воду после выполнения отталкивания от мостика, кинетический момент тела человека (К ) остается неизменным. Поэтому если уменьшить момент инерции (J ), то есть произвести группировку, увеличивается угловая скорость ω . Перед входом в воду, спортсмен увеличивает момент инерции (выпрямляется), тем самым он уменьшает угловую скорость вращения.

В процессе движения любое судно, особенно крупнотоннажное, имея значительную массу и недостаточно плотное сцепление с водной средой. Обладает свойством довольно медленно прекращать движение и изменять скорость. Инерционные свойства – физическая зависимость между массой и быстротой приращения скорости. Они обычно определяются опытным путем и результаты заносят в таблицу маневренных элементов судна. Для судовождения важны расстояние и время гашения инерции и развития максимальной скорости судном, эти параметры называются инерционные характеристики судна : торможение, свободный выбег и разгон.

Торможение – процесс гашения инерции прямолинейного движения судна путем реверсирования движителей с переднего на задний ход (и наоборот). Характеризуется длиной тормозного пути L т и времени торможения t т. Это расстояние пройденное судном с момента команды «Стоп» и реверса движителей до полной остановки судна и затраченное на это время. Торможение работой движителей «Полный назад» наз. экстренным.

Выбег процесс гашения инерции поступательного движения судна под действием сопротивления воды без активной работы движителей. Характеризуется расстоянием L в, которое проходит судно с момента команды «Стоп» до момента полной остановки судна и временем затрачиваемым на это.

Разгон процесс достижения судном установившейся скорости при заданном режиме работы движителей. Характеризуется расстоянием L р и временем при достижении установившейся скорости на данном режиме работы движителей.

Инерционные испытания судна проводят по специальной программе в зависимости от конструктивных особенностей судна, результаты испытаний заносят в таблицу маневренных элементов судна. Наибольшее значение имеют характеристики торможения.

Характеристики выбега имеют особенно большое значение для буксируемых судов и составов.

Знание и учет инерционных характеристик при управлении судном обязательны для судоводителя!

3. Управляемость и циркуляция судна, её периоды и элементы

Управляемость судна зависит от свойств судна: корпус, рулевое устройство, движители, скорость, а также от внешних факторов ветер, течение, волнение, глубина и ширина С.Х. Особенно следует учитывать влияние скорости, которое неоднозначно. Так при движении судна гидродинамические силы и моменты (пропорциональны квадрату скорости набегающего потока) на руле и корпусе имеют постоянное соотношение, следовательно и траектория движения стабильна. Но если уменьшить скорость вращения винта, то момент руля изменится сразу из-за ослабления потока от винта, а гидродинамический момент на корпусе останется прежним, соотношение сил и моментов нарушится и траектория движения изменится.

Управляемость судна характеризуется устойчивостью на курсе и поворотливостью.

Устойчивость на курсе способность судна сохранять направление прямолинейного движения. Различают: собственную устойчивость – свойство после прекращения внешнего воздействия, без руля, приходить в прямолинейное движение (большинство судов собственной устойчивостью не обладают), и эксплуатационную устойчивость – способность судна сохранять заданное направление движения с помощью периодических перекладок руля (в зависимости от судна, осадки и дифферента). Характеризуется количеством требуемых перекладок руля в единицу времени для удержания судна в прямолинейном движении.

Поворотливость – способность судна изменять направление движения и описывать траекторию заданной кривизны. Зависит от средств управления судном и характеристик корпуса в т.ч. осадки.

Устойчивость и поворотливость – антиподы, однако нужны оба и стремятся иметь положительными оба эти свойства судна.

Процесс поворота судна с переложенными рулями называется циркуляцией , которая характеризуется элементами и периодами.

После перекладки руля судно некоторое время движется по инерции в прежнем направлении, после преодолении сил инерции судно начинает двигаться по криволинейной траектории – циркуляции. В это время начинает действовать центробежная сила С приложенная к Ц.Т. и пропорциональная массе судна, квадрату скорости поступательного движения и обратно пропорциональна радиусу кривизны C=mv с 2 /r.

Рис 10 (о)

Перераспределяется гидродинамическое давление на корпус судна, т.е. увеличивается давление на внешний борт.

Т.к. вода набегает на него под углом к ДП, точка приложения этих сил сопротивления R находится в носовой части на1/4 длины судна от форштевня. Приложив к ЦТ две параллельные и противоположно направленные силе R силы R 1 и R 2, получим пару сил R и R1 с плечом b, создающие поворачивающий момент наз.позиционным Mп = Rв. С появлением угловой скорости поворота на судно действуют моменты руля и позиционный. Влияние Мп зависит от формы и размеров подводной части судна и угловой скорости поворота.

Дальнейшее движение (циркуляция) судна вызывает рост гидродинамического давления на корпус судна в кормовой части создавая реактивную силу D с плечом до ЦТ и момент поворачивающий судно в сторону противоположную повороту наз. демпфирующим , таким образом поворачивающий момент циркуляции состоит:

Моб = Мр + Мп – Мд

Циркуляция криволинейная траектория перемещения центра тяжести судна при перек ладке рулевого органа , характеризуется критерием поворотливости отношением тактического диаметра циркуляции к длине судна Dт/L И имеет периоды:

Маневренный – от перекладки руля до начала поворота судна, под действием переложенного руля.

Эволюционный – от начала поворота до изменения курса на 90 град.относительно первоначального. В этот период растет угловая скорость поворота, судно имеет дрейф в противоположную повороту сторону, скорость поступательного движения уменьшается.

Установившейся циркуляции – после изменения курса на 180 град. от первоначального, судно движется по замкнутой траектории с постоянным диаметром Dц, и постоянной поступательной угловой скоростью.

Элементы циркуляции:

Выдвиг – расстояние между положениями ЦТ в момент перекладки руля и измененного на 90 град. курса.

L1(0,6 – 1,5 Dц )

Прямое смещение - расстояние на которое смещается ЦТ при повороте от 0 до 90 град. L2 (0,25- 0,5Dц )

Обратное смещение – расстояние смещения ЦТ в сторону противоположную повороту (0,1Dц)

Полюс поворота – воображаемая точка на ДП или её продолжении вокруг которой происходит поворот в данный момент.

Угол дрейфа – угол между вектором линейной скорости Vц и ДП судна.

Диаметр установившейся циркуляции – расстояние между положением ЦТ при изменении курса на 90 и 270 град от первоначального.

Диаметр тактической циркуляции – расстояние между ДП при курсе 0 град. и курсе 180 град.(1,1 – 1,2 Dц )

Dт = L2 T/10Sp

Циркуляция зависит от характеристик и качеств судна L, B, T, рулей, скорости, количества и размещение груза, крена и дифферента, внешних факторов. Данные испытаний управляемости и циркуляции заносятся в таблицу маневренных элементов судна, вносятся в формуляр маневренных характеристик и в лоцманскую карточку.

В таблицу маневренных элементов судна включают:

1. элементы циркуляции таблично и кривые

2.Таблици и графики скорости и оборотов движителя

3.Размерения судна

4.Инерционные характеристики на различных режимах

5.Таблицу осадки судна и проседания

6.Эволюцию при тревоге «Человек за бортом»

1-4 в балласте и в грузу.

По тематике данной лекции проводится 4-х часовое практическое занятие №2.2

Лекция № 2.2 (2 часа) . ТЕМА: Влияние на управляемость судна рулевых устройств. По данной теме проводится 2-х часовая лабораторная работа №2.1

Похожие публикации